Cre'ate PC games the easy way using
- Game Maker’s simple drag-and-drop interface

\ Learn essential game design theory

I\ ! \ " .]
‘\i*'; ~ Make your games more fun!

‘ I ..\.
2\@
&'

~ Jacob Habgood
- and Mark Overmars

~ Foreword by Phil Wilson,
W the producer of the highly anticipated Xbox 360™ game Crackdown.
.;\ \
a2

The Game Maker’s
Apprentice

Game Development for Beginners

Jacob Habgood
Mark Overmars

Apress*

The Game Maker’s Apprentice: Game Development for Beginners
Copyright © 2006 by Jacob Habgood and Mark Overmars

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

In purchasing this book, the authors and publisher grant you permission to use the electronic resources
from the accompanying CD for commercial or noncommercial use in your own games made with Game
Maker. However, redistribution of the original games or their resources is prohibited and the authors
retain full copyright of all the original game concepts and the intellectual property associated with them.

ISBN-13 (pbk): 978-1-59059-615-9
ISBN-10 (pbk): 1-59059-615-3
Printed and bound in China987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills

Development Editor: Adam Thomas

Technical Reviewer/Additional Material: Sean Davies

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole LeClerc

Copy Editor: Liz Welch

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Dina Quan

Proofreader: Lori Bring

Indexer: Present Day Indexing

Artist: Kinetic Publishing Services, LLC

Ilustrations and Cover Art: Kevin Crossley

Game Artists: Kevin Crossley, Matty Splatt and Ari Feldman

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

To halcyon days
with a frog,
a parrot,
and a talented bunch of gremlins.

Contents at a Glance

FOrBWOrd .. Xiv
Aboutthe AUthOrs Xvi
About the Technical REVIBWET i e Xvii
Aboutthe lllustrator Xviii
ACKNOWIBAgMENTS Xix
INrOdUCHION . . . XX

PART 1 mm = Getting Started

CHAPTER1 Welcome to Game Maker 3

CHAPTER 2 Your First Game: DevilishlyEasy 9
PART 2 mmm Action Games

CHAPTER 3 More Actions: A Galaxy of Possibilities 41

CHAPTER 4 Target the Player: It's Fun Being Squished 65

CHAPTER 5 Game Design: Interactive Challenges 85
PART 3 mmm | evel Design

CHAPTER 6 Inheriting Events: Mother of Pearl 101

CHAPTER 7 Maze Games: More Cute ThingsinPeril 127

CHAPTER 8 Game Design: Levels and Features 149

PART 4 === Multiplayer Games

CHAPTER 9 Cooperative Games: FlyingPlanes 169
CHAPTER 10 Competitive Games: Playing Fair withTanks 191
CHAPTER 11 Game Design: Balance in Multiplayer Games 211

PART 5 === Enemies and Intelligence

CHAPTER 12 GML: Become a Programmeroeen. 225
CHAPTER 13 Clever Computers: Playing Tic-Tac-Toe 245
CHAPTER 14 Intelligent Behavior: Animatingthe Dead 259
CHAPTER 15 FinalWords 291
BIBLIOGRAPHY 297

Contents

FOrBWOrd .. Xiv
Aboutthe AUthOrs Xvi
About the Technical REVIBWET i e Xvii
Aboutthe lllustrator Xviii
ACKNOWIBAgMENTS Xix
INrOdUCHION . . . XX

PART 1 === Getting Started

CHAPTER1 Welcome to Game Maker 3
Installing the Software 3
Registration ... 5
The Global UserInterfaceccc i, 6
RunningaGame i 6
How to Get More Information 8
What's Next? 8

CHAPTER 2 Your First Game: DevilishlyEasy 9
Designing the Game: Evil Clutches 9
SPMtBS . 10
ObjJeCtS .o 13

The Boss Object oo 13
Eventsand Actions 14
The Dragon Objectc it 18
ROOMS . 20
Saveand Run 22
Instancesand Objectsl 24
Demons, Baby Dragons, and Fireballs 24
The Fireball Object 24
The Demon Object 27
Summoning Demons ... 30
The Baby Dragon Object 31

vii

viii CONTENTS

Backgroundsand Sounds 33
ABackgroundImage 33
Background Music 34
Sound Effects ... 35

Congratulations 36

PART 2 mm = Action Games

CHAPTER 3 More Actions: A Galaxy of Possibilities 41
Designing the Game: Galactic Mail 41
Spritesand Sounds 42
Moons and Asteroids 45
FlyingAround 50
Winningand Losing 56

AnExplosion 56
SCOMS .t 57
LevelS ... 58
FinishingTouches i 60
ATitle SCreen 60
Winningthe Game 61
Adding Some Visual Variety 62
Help Information 62
Congratulations i 63

CHAPTER 4 Target the Player: It’s Fun Being Squished 65
Designing the Game: Lazarusccciiiiiinn... 65
An Animated Character 66
ATestEnvironmentl 72
Falling BOXES 73
FinishingTouches 78

NoWay Qut! 78
AddingaGoal 79
Startingalevel 80
Sounds, Backgrounds,andHelp, 81
LeVvelsS ... 82

Congratulations 83

CONTENTS

CHAPTER 5 Game Design: Interactive Challenges 85
What Makes a Good Game?c i, 85
Game Mechanics ...t 86
Interactive Challenges ..., 87
GaAME GENIES . .. 87
Challengeso 88
Difficultyo 88
GOaIS .. 89
Rewards 90
SUbgoals ... 92
Interactivity 92
Choicesand Control ccoiiiiiiiai... 93
Control Overload! i 93
Unfair Punishment 94
Audio Feedback 95
SUMMArY ... 96

PART 3 mm = Level Design

CHAPTER 6 Inheriting Events: Mother of Pearl 101
Designing the Game: Super Rainbow Reef 101
AGame Framework 103

TheFront-End 103
The Completion Screen 106
Bouncing Starfish 107
Biglegs 113
Parent POWer 116
LIVES .o 117
BIOCKS 120
Normal Blocks ... 120
SolidBIOCKS 120
Special Blocks 121
Polishingthe Game i, 123
Sound Effects 123
Saving Games and Quittingl 123
ASlowerStart 124
Creatingthe Levels............... il 125

Congratulations 126

ix

X

CONTENTS

CHAPTER 7

CHAPTER 8

Maze Games: More Cute Things in Peril 127
Designing the Game: Koalabr8 127
TheBasicMaze ... 128
The Game Framework 129
AMoving Characterccciiiiiiiin... 131
SavetheKoala 136
CreatingHazards i 137
TileS . 140
Adding Additional Hazards 143
Locks and Switches 143
ADetonator 144
RoCKS ... 145
Finishingthe Game i 147
Congratulationsco i 148
Game Design: Levels and Features 149
Selecting Features 149
Pieinthe SKy 150
Do You HaveThatinBlue? 151
StartinganArmsRacel 152
One-Trick Ponies i 152
Emerging with More Than You Expected 153
DesigningLevels 154
The Game Maker’s Apprentice 155
Learning CUIVESt 156
Difficulty Curves i 158
SavingtheDayo 160
Applying RAIL .o o 160
Featureso 160
Emerging Springs 161
Training Missions 161
DividingLevels ... 162

SUMMArY ... 163

PART 4 === Multiplayer Games

CHAPTER 9 Cooperative Games: Flying Planes

Designing the Game: Wingman Sam
Variables and Properties
The lllusion of Motionocoiiiiin...
FlyingPlanes i
EnemiesandWeapons
DealingwithDamage
TimeLines
More Enemies
EndBOSSo
FinishingTouches i,
Congratulations

CHAPTER 10 Competitive Games: Playing Fair with Tanks

Designing the Game: Tank War
PlayingwithTanks i,
FiringShells
SecondaryWeapons ...
VWS
Congratulations i

CHAPTER 11 Game Design: Balance in Multiplayer Games

Competition and Cooperation
Independent Competition
Dependent Competition
Independent Cooperation
Dependent Cooperation
Mixand Match

Balanced Beginningsl
Equivalent Characters
Balancing Differences

CONTENTS

Xi

Xii

CONTENTS

Balanced ChoiCe 218
Weighting Choices i 218
Cyclic Relationships ..., 218

Balanced Computer Opponentsot 220
Artificial Stupidity 220

SUMMANY .. 221

PART 5 m== Enemies and Intelligence

CHAPTER 12 GML: Become a Programmer 225
HelloWorld 226
Variables 228
Funclions 230
Conditional Statementsl 232
Repeating Things 234
AITaYS . 237
Dealing with Other Instances 239
ScriptsAs Functions 240
Debugging Programs 242
Congratulations o 244
CHAPTER 13 Clever Computers: Playing Tic-Tac-Toe 245
Designing the Game: Tic-Tac-Toecciiuia... 245
The Playing Field i 246
Letthe ComputerPlay L. 251
A Clever Computer Opponent ..., 254
Adaptive Gameplay 256
Congratulations i 257
CHAPTER 14 Intelligent Behavior: Animating the Dead 259
Designing the Game: Pyramid Panic 259
The Basic Frameworkc i 260
Creating the Maze and the Explorer 263
Expanding Qur Horizons i, 265
Reactive Behavior 267

Time for Treasure! 269

CONTENTS

Movable BIOCKSo 270

Rule-Based Behavior 271

Walking Around 273

Moving Toward the Explorer 275

Dealingwith States 277

Scarabs ... 280

LetThere BeLight 284

Lookingtothe Future 289

CHAPTER 15 FinmalWords ... 291
Creating Resources ..o 291

Artwork: The GIMP 291

Music: Anvil Studio 292

Sound Effects: Audacityl 294

The Game Maker Community, 294

NotetoTeachers i, 295

GOOd LUCK ... 296
BIBLIOGRAPHY 297
INDEX ... 299

Xiii

Xiv

Foreword

Way back when Mario was still a mere twinkling in Miyamoto’s eye, I was the proud owner
of a state-of-the-art Commodore 64 microcomputer. It came with a game development sys-
tem called “The Quill,” which allowed anyone to create their own text-based adventure games.
It may have been incredibly crude, but it suddenly put at my fingertips the thrill of entertain-
ing my nearest and dearest by devising “interactive challenges” of my own. Unfortunately, I
knew little about game design, and rather than easing my players into a new and alien world, I
treated them as opponents that had to be defeated before they could reach the end. Their spir-
its crushed, they left, never to return . . .

It took me years of playing a variety of good (and bad) games to eventually learn how to
treat the player to the game-playing experience that their investment of time and money
deserved. It took just hours of reading this book to wish I'd had its invaluable guidelines and
the accompanying Game Maker tool to help me take my own first steps into game develop-
ment all those years ago.

Two decades later, I now work for Real Time Worlds as the producer of Crackdown, an
imminent Xbox 360 title developed exclusively for Microsoft. Crackdown is the result of over
three years of development from a team that’s now nearly 70 strong in Dundee (Scotland),
with many more contributors across North America and Eastern Europe. This game has cost
millions of pounds to create, and already consists of over two and half million lines of program-
ming code! Blood, sweat, and tears have been poured into this title to provide cutting-edge
graphics technology, stunning art assets, and dramatic surround sound. We've spent days
(and nights) wrestling with new technologies to provide the player with a “playground” and
“toy set” that was previously only the stuff of dreams.

Nonetheless, once you strip away the gloss, Crackdown boils down to a handful of game-
play linchpins, or what we term the “pillars of play.” Take it from me that when charged with
building such a grand gaming monument, it is vitally important to have absolute faith in the
basic foundations! I was therefore very pleased to see that this book encourages you to iden-
tify these pillars (or game mechanics) and discover how a system of simple rules can combine
in unique and compelling ways to create a spellbinding experience.

As you progress through the book you'll build a series of excellent games that you might
never have even dreamed you could be capable of creating right now. The instructions are
clear and concise, but also encourage you to experiment with your own designs. For example,
your version of the captivating and original Koalabr8 game (Chapter 7) will almost certainly be
a unique piece of software. The crazy devices you invent, and the way you lay out your levels,
will certainly differ from mine. Watch out for Lazarus too (Chapter 4)—it may interest you to
know that this eponymous hero first appeared in Jacob’s student portfolio, and was partly
responsible for securing his first programming job in the industry!

FOREWORD

Mark and Jacob have brought together decades of game development expertise in this
book. As well as being a professor of computing, and the creator of Game Maker, Mark first cut
his game-programming teeth creating versions of games like Super Breakout for the Atari ST.
Jacob has a string of titles to his name, and his in-depth knowledge of “the craft” consistently
yields outstanding results. Never more so was this the case than when I had the pleasure of
working with him on the team that created the PlayStation hit Hogs of War (also mentioned in
this book). Where Jacob differs from his peers is in his mastery of all four of the fundamental
game development disciplines: programming, sound, art, and, of course, design. Now, thanks
to Mark’s Game Maker software, you can find out what it feels like in their world!

One of the key messages I hope you'll take away from this book is that there’s a world of
difference between having a great idea for a game and being a great game designer. The initial
idea is simply the seed from which the game grows, or the stone from which the pillars are
hewn. The role of a designer is to fully realize the vision: conceiving and continually refining
the various supporting mechanisms to make them mesh like the components of a Swiss time-
piece. As is repeatedly stated in these pages, there is no correct solution to game design—only
a great idea, well executed and injected with personal flair and enthusiasm. Even if you're
struggling to pin down that idea right now, I'm sure you will have wrestled it onto the screen
and into the hands of friends and family before finishing the final chapter of The Game
Maker’s Apprentice.

Good luck!

Phil Wilson
Producer, Real Time Worlds

Crackdown

Xv

XVi

About the Authors

JACOB HABGOOD is 30 years old and has been writing computer games since he was 10. He
wanted to be a psychologist when he grew up, but somehow he ended up with a computer
science degree and went into the games industry instead. He worked as a professional game
developer for seven years, programming console games for Gremlin Interactive and Info-
grames/Atari in the north of England. During this time he contributed to a range of successful
titles and led the programming teams on Micro Machines (PlayStation 2, Xbox, and Nintendo
GameCube) and Hogs of War (PlayStation).

Jacob is now a doctoral student at the University of Nottingham, researching the educa-
tional potential of computer games. As part of this research, Jacob runs clubs and work-
shops teaching children and teenagers how to make their own computer games and provides
free teaching resources through his website: gamelearning.net. All being well, this work will
soon earn him a Ph.D. from Nottingham’s Department of Psychology so that he can finally
consider himself grown up.

MARK OVERMARS is a full professor in computer science at Utrecht University in the
Netherlands. There he heads the research center for Advanced Gaming and Simulation
(www.gameresearch.nl) in which researchers from different disciplines collaborate on all
aspects of gaming and simulation. One of Mark’s prime research domains is computer games.
He is also one of the founders of the Utrecht Platform for Game Education and Research
(www.upgear.nl), a collaboration of different game-related educational programs in the
Netherlands. For many years he has taught courses on computer game design at Utrecht
University, and has given lectures on game design to many types of people (high school kids,
teachers, researchers, and politicians). Mark is the author of a number of popular software
packages, in particular, the Game Maker software package used as the development tool in
this book.

About the Technical Reviewer

SEAN DAVIES is 28 years old and has been fascinated by computer games from an early age. He
grew up fairly certain that he would become a novelist—or possibly a rock star, but eventually
came to a number of important realizations:

1. He’s probably never going to be a rock star.
2. Game programming is quite cool, though.

3. Badgers are just really big weasels (the exchange rate is approximately 20 weasels to
the badger if you're interested).

4. Any attempts to construct a serious calculus of the family Mustelidae are probably best
kept to yourself—people think you're strange (see above).

Having made these startling realizations at such an early stage, the rest of his career path
was pretty much decided. After graduating with a degree in computer science, he joined Info-
grames in Sheffield, UK, and has worked in the games industry ever since. When Infogrames
Sheffield closed its doors in 2002, he joined Sumo Digital, where he still is today. Sean is cur-
rently Xbox platform lead on Outrun 2006: Coast to Coast, which Sumo is developing for
SEGA, and is looking forward to working on some next-generation console programming in
the near future. He currently has no intention at all of ever becoming properly grown up.

'L

1 't'o‘r:e-'
*= 0000000

Outrun 2006: Coast to Coast

Xvii

Xviii

About the lllustrator

The first things Kev Crossley remembers drawing as a child were some Daleks and the
Incredible Hulk, and he knew from that point on that he would grow up to be one or the other.
When Kev was five, his dad brought home the videogame Pong, and Kev has been trying to
come to grips with it ever since. Nonetheless, he has managed to get through a couple of Zelda
games and has spent many a happy hour blasting the head off one of this book’s authors with
a Rail Gun.

Kev spent some time in a university, but eventually realized that an art degree was not
going to give him access to Time Lords or gamma rays, so he decided to work in a bakery
instead. Eventually he got sick of eating coconut macaroons and biscuits and applied for a
job making videogames for a little green monster. For the next third of his life, he had a great
time producing graphics and animation for over 20 titles—some of which were quite good.

These days Kev is a concept artist at Core Design in Derby, UK, where he has occasionally
been known to hang out with women obsessed with tombs. He has also done copious
amounts of freelance illustration and writing for publishers all over the world, including a
series of instructional drawing books and sequential work for Rebellion’s sci-fi comic 2000AD.
His one regret is that he can't ride a skateboard, because a cross between the Daleks and
Tony Hawk would be unstoppable.

Acknowledgments

By rights, this book really shouldn't exist, because it’s required far too much effort from far
too many people to make it a profitable endeavor. Nonetheless, it does exist, and as a result
there are a lot of people who need to receive our heartfelt thanks in helping us to realize this
labor of love.

First and foremost, we need to thank all those people closest to the individuals directly
involved in bringing this book into existence. Their influence may not be obvious to the
reader, but projects like this could never happen without the support and understanding of
the wives, girlfriends, and families of all the people involved in this book. In particular, Jacob
would like to thank Jenny, Fiona, Michelle, and Amelia, all of whose names should adorn the
credits of many a videogame for the sacrifices that they regularly make to indulge the creative
passions of their loved ones.

The next biggest thanks should go to Matty Splatt, who has shied away from a full billing
in the “About the” sections but did a fantastic job of bringing Koalabr8 and Pyramid Panic to
life with his comical and beautifully polished graphics. We would also like to give a special
thanks to Ari Feldman for allowing us to use and modify his game sprites for the Wingman
Sam game.

More thanks go to Jenny and Marguerite Habgood
for their grammatical critiques, and the following people
for all their comments and input into the project: Sarah
Peacock, Judy Robertson, John Sear, and Phil Wilson.
Additional thanks goes to all the staff and students at
Sheffield West City Learning Centre, who suffered the
book’s instruction in its earliest form.

Quick thanks also to everyone who enthusiastically
play-tested the games in the book, including Gail
Clipson, Fiona Crossley, Katie Fraser, Giulia Gelmini,
Jasmin Habgood, Martijn Overmars, Ronald Overmars,
and Stuart Reeves.

Finally, we would like to thank everyone at Apress
for their support, and for sticking with us even after it
became plainly obvious that both authors were far too
busy to write a book!

Xix

XX

Introduction

Who wouldn’t want to make computer games? It’s creative, rewarding, and these days even
pretty darn cool too. You can make them to share with your school friends, your work col-
leagues, your grandchildren, or even the entire gaming world. This book is not specifically for
the young or old, but anyone who loves computer games and wants to have a go at making
them for themselves. We've all painted a picture, written a story, and made a wobbly piece of
pottery at some point in our lives, so it’s now time to embrace the art form of the future and
try making computer games too.

This book provides a collection of engaging tutorials that introduce you to the Game
Maker tool and teach you how to use it. The first four parts of the book take you step by step
through seven different projects using Game Maker’s simple drag-and-drop programming sys-
tem. By the time you've finished making Evil Clutches, Galactic Mail, Lazarus, Super Rainbow
Reef, Koalabr8, Wingman Sam, and Tank War, you'll have a well-rounded experience of making
games with Game Maker. Parts 2, 3, and 4 also end with game design chapters that encourage
you to stand back from your creations and consider how principles of game design can be
used to make them more fun. Moreover, we don't just talk about it, but we provide new ver-
sions of the games with improved features so that you can experience for yourself how solid
game design can lead to good gameplay.

Game Maker provides a simple environment that allows complete beginners to quickly start
building games, using an icon-based system of events and actions (see Figure 1). This drag-and-
drop programming technique provides an easy way to learn about game development and
allows you to create complete games without going near a traditional programming language.

0 Object Properties

| T 3 ot Move 3
Name: | abject_deman Events: Actions: 7

Siprite | y Create Destroy the instance Pel (28 |2

sf Isprite_demon & |'N' objsat diagan Set the score relative to 100

- i+~ W cbject_fireball
"‘ Outsids oo | Flay zound zound_demaon |§| @
Visible [50id @ Intersect Boundary Jumg

(2] K]

[AREIR [24008 [|0Jy.|o::| [Zuew [Lugeu.l] a0

e

Figure 1. Game Maker’s simple drag-and-drop system uses iconic events and actions to program
computer games.

INTRODUCTION

However, once you become more experienced, traditional languages can provide a more
powerful way to program games. Consequently, Game Maker also provides the Game Maker
Language (GML), which underpins Game Maker and makes it such a powerful tool (see
Figure 2). The last part of the book uses several simple examples to introduce you to GML,
before we demonstrate how you can use it to create artificial intelligence for undead creatures
in the Pyramid Panic game.

@ sc ript Properties |:| |§| [z|

1 1= 1o TR |
K| & ﬂame,Iscr_hnd_wm |

le
var i,3:
// see whether there is a winning move
for (i=0; i<=z; i+=1)
for (3=0; j<=z: j+=1)
if (field[i,]] == 0)
{
field[i,3] = 2:
if scr_check computer win() return true;
field[i, 3] = O
H
return false;

H

INS

Figure 2. Game Maker Language (GML) provides extra power for advanced users.

The example games in this book have been brought to life with graphics and illustrations
by real games industry artists. Furthermore, you can use all the professional resources pro-
vided on the CD in your own Game Maker projects with the blessing of the publisher and
authors. We only ask that you share your creations with the online Game Maker community
so that we can see what you have created with them. We want you to enjoy the creative journey
ahead and hope that it will help you to share in our passion and enthusiasm for creating
computer games!

XXi

PART 1

Getting Started

Welcome to the world of game development. Playing games can be a lot of fun, but
you’re about to discover why making them is so much better!

CHAPTER 1
EEN

Welcome to Game Maker

If you're looking for an enjoyable way to learn how to make computer games, then this is the
book for you. You don’t need a degree in computer science and you won't have to read a book
the size of a telephone directory—everything you need is right here. As long as you can use
Windows without breaking into a cold sweat, you have all the qualifications you need to start
making your own games. In the chapters ahead, we’ll show you how to make nine complete
games and pass on some of our hard-earned professional experience in game design along the
way. Already, you are just two chapters away from completing your first game and have taken
your first step along the path of the game maker’s apprentice!

Every trade has its tools, and every tradesman knows how to choose the right tool for the
job. In this book we will be creating all the games using a software tool for Windows called
Game Maker. Game Maker is ideal for learning game development as it allows you to start
making games without having to study a completely new language. This makes the whole
learning experience a lot easier and allows you to concentrate on creating great game designs
rather than getting bogged down with the technicalities of programming. Nonetheless, pro-
gramming languages can offer many advantages to experienced users and so Game Maker
also includes its own language, which is there for you to discover when you feel ready to use it.

You'll be pleased to hear that there is a free version of Game Maker included on the CD
accompanying this book. All the games can be made using this free version; however, there are
some special effects in the later chapters that will only work with a registered version of Game
Maker. If you want to register your version for this, or any of the other extra features that it
unlocks, then it can be obtained from the Game Maker website for a very small fee (currently
US $20): www.gamemaker.nl.

Installing the Software

You can’t begin making the games in this book until you have the Game Maker software
installed on your PC. You'll find the install program in the Program folder on the CD, so insert
the disc, navigate to the Program folder, and start the program called gmaker inst.exe.The
form shown in Figure 1-1 should then appear on the screen.

4

CHAPTER 1 © WELCOME TO GAME MAKER

4 Game Maker 6.14 Install Program - Welcome

Welcome to the Game Maker 6.1A Install
program.

1 your hard

Figure 1-1. Install Game Maker by following the instructions on the screen.

Click Next and follow the instructions as they appear. We strongly recommend installing
the program in the default directory.

Note Game Maker requires a fairly modern PC running Windows 98SE, Me, 2000, or XP—although
Windows XP is preferable. You'll need a DirectX-compatible graphics card with at least 32MB of memory and
DirectX 8 or later installed on your machine. A DirectX-compatible sound card is also required for sound and
music. If your machine does not meet these requirements, you might have problems running Game Maker
or the games created with it. Don’t worry if all this techno-babble makes no sense—just try it out because
you're not likely to have any problems unless your PC is very old. See the readme file in the Program folder
on the CD for further details.

Game Maker should start automatically once the installation has completed. You can also
launch it directly from the Windows Start menu or by double-clicking the Game Maker icon
on your desktop. The first time you run Game Maker on a new computer, you will be asked if
you want to run the program in Advanced mode (see Figure 1-2). Click No as it will be easier
to stick with the Simple mode for the time being—we’ll show you how to switch to Advanced
mode later on.

CHAPTER 1 © WELCOME TO GAME MAKER

Game Maker can run in simple mode or advanced mode, IF vou are an
\..3(} inexperienced user you better use simple mode. The mode can be changed later in
the File menu,

Do you wantk to enable Advanced mode?

Figure 1-2. Click No at the prompt, as we want to start by using Simple mode.

Registration

The free version of Game Maker provided with this book is fine for learning how to make all
the games in this book, but some of Game Maker’s more exciting features are disabled unless
you register the program. Registering will also allow you to create more professional-looking
games by removing the Game Maker pop-up message that appears at the start of any game.
Until you register, a reminder message will appear from time to time like the one shown in
Figure 1-3. Clicking Close this Form will make it disappear, but if you use Game Maker a lot
we strongly encourage you to register it. Registration will support the further development of
Game Maker and ensure that everyone who uses it can continue to enjoy making games for
years to come. Information about registration can be obtained by clicking Go to Registration
Webpage or by simply visiting the Game Maker website at www.gamemaker.nl.

Registration

This copy of Game Maker is NOT REGISTERED!

l : Go to Registration Webpage]

iThis wersion of Game Maker can be uzed free of charge. There are no restictions on
| the games vou create with it. You are though khighly recommended to register the
| program. Regiztration will support the further development of Game Maker. Alzo
vou will get many additional features among which:

- Thiz screen will dizappear and no logo iz shown when the game loads.

- Rotated. color blended and translucent sprites.

- Additional actions for e.q. CD music, rotated text, and colorized shapes,

- Special sound effects and positional 30 sound.

- A number of advanced drawing functions, e.qg. textured polypgons.

- & particle spstem to create fireworks, flames, rain, and other effects.

- Functions far 3D graphics.

- The pozsibility to create games that can be played over a network.

- The pozzibility to extend the functionality using DLLs.

’ fj Enter a Registration K.ey l

| The registration fee iz currentip 15 EURD or US $20 [subject to change).
| There are a number of different waps in which Game Maker can be registered, using
| zecure online credit card payments, PayPal, money orders, bank tanfers or cash.

EFDI further information on registration and for online registration click an the topmost
| button, It vill bring you to the Registration Information page on the Game Maker
| website,

[o Costisfom | | vow sugponis highy smesitsd

Figure 1-3. Select Close this Form to start working with Game Maker or Go to Registration
Webpage to learn more about registration.

CHAPTER 1 © WELCOME TO GAME MAKER

The Global User Interface

If everything has gone according to plan, then you should now be looking at the window
shown in Figure 1-4. If not, consult the readme file in the Program folder on the CD for possible
causes and further instructions.

~ Game Maker 6.1 Simple: <new game>

File Edit Resources Scripts Run Window Help

DB3H) €EOEO0 0 |

) Sprites

[Sounds

[Backgrounds
[Objects

[Rooms

- |i] Game Information

" |4] Global Game Settings

Figure 1-4. This is Game Maker’s main window.

We'll describe the user interface in more detail in the next chapter, but for the moment
just notice that there’s a standard-looking menu and toolbar at the top of the screen, and a
folder tree on the left-hand side. This tree is where we will add all the different game resources
that are used to make Game Maker games. More about resources later, but first let's make sure
Game Maker is working properly by running a simple game.

Running a Game

Loading and running a game that has been created using Game Maker couldn’t be simpler.
Just complete the following instructions.

CHAPTER 1 © WELCOME TO GAME MAKER

Running the sample game:

1. Click the File menu and select Open from the drop-down menu. This will bring up the
standard Windows file requester.

2. Make sure the CD is in your CD drive. Navigate to the Games/Chapter01 folder on the
CD and look for bouncing.gmé6 (all Game Maker files end with this . gmé6 extension).
Select this file and click Open.

It may not seem as if anything has changed, but if you look carefully, there are now plus
signs in front of the different folders on the left-hand side. Clicking these plus signs will open
up the folders to show the resources that they contain.

Let’s run the game. Don't expect too much, though; this is just a simple demo to check
whether Game Maker works correctly on your machine. Click the green play button on the
toolbar. The Game Maker window should disappear and the image in Figure 1-5 will appear.
This is the pop-up that is only shown in the free version of the program and can be removed
by registering your copy of Game Maker.

Figure 1-5. This pop-up message appears in the free version of Game Maker.

After a short pause, a game window should appear like the one in Figure 1-6. You should
hear music and see a number of balls bouncing around the screen. If you like, you can try to
destroy the balls by clicking on them with the left mouse button, or you can press F4 to make
the game window fill the screen. When you have seen enough, press the Esc key to end the game.

Bouncing Balls

\ =)<

] .ii 4 . ,il’__' ,\% '
(Game)\.» * /Maker):

= ~ =
—

] ' ' / J

Figure 1-6. In the bouncing ball demo, you can try to destroy the balls by clicking on them with
the left mouse button.

CHAPTER 1 © WELCOME TO GAME MAKER

If something went wrong (for example, you got an error message or you didn’t hear the
music), then consult the readme document in the Program folder on the CD for possible causes
and further instructions. You can now close Game Maker by choosing Exit from the File menu.

How to Get More Information

This book will show you how to make some cool games with Game Maker, but it is not a com-
plete manual for everything that Game Maker can do. Fortunately, the Game Maker help file
contains all the facts, and you can access it at any time through the program’s Help menu or
the Windows Start menu. A copy of this document is also available in the Documents folder
on the CD.

You are also strongly advised to check out the official Game Maker website at
www . gamemaker.nl. Here you'll find the latest version of the program and lots of games that
have been created with it—as well as additional resources and documents. The website also
gives you access to the Game Maker user forum. This is a very active forum and a great place
to get help from other users or just to exchange ideas and games.

What’s Next?

Now that the boring stuff is out of the way, so I think it’s about time we made our first game.
You're probably thinking your first game will be pretty dull—something with more bouncing
balls, perhaps? Not likely!

CHAPTER 2
EEN

Your First Game:
Devilishly Easy

Learning something new is always a little daunting at first, but things will start to become
familiar in no time. In fact, by the end of this chapter, you'll have completed your very first
gaming masterpiece!

Designing the Game: Evil Clutches

Before you start making a game, it’s a good idea to have an idea of what you’re aiming for.
Commercial game developers usually prepare long design documents before they start creat-
ing a game. Nonetheless, writing documents isn’t a fun way to learn how to make games, so
we'll keep our designs as short as possible. We're calling the game in this chapter Evil Clutches,
and this is its design:

You play a mother dragon who must rescue her hatchlings from an unpleasant band of
demons that have kidnapped them. The band’s boss sends a stream of demons to destroy the
dragon as the hatchlings make their escape. The mother can fend off the boss's minions by
shooting fireballs, but must be careful not to accidentally shoot the hatchlings!

The arrow keys will move the dragon up and down and the spacebar will shoot fireballs.
The player will gain points for shooting demons and rescuing young dragons, but will lose
points for any hatchlings that accidentally get shot. The game is over if the dragon is hit by a
demon, and a high-score table will be displayed. Figure 2-1 shows an impression of what the
final game will look like.

Using this description, we can list all the different elements needed to create our game:
a dragon, a boss, demons, hatchlings, and fireballs. Making the game will require pictures of
each of these as well as a background image, some sound effects, and music. We call all these
different parts that make up the game resources, and the resources for this game have already
been created for you in the Resources/Chapter02 folder on the CD. For the remainder of the
chapter, we will learn how to put these resources together into a game and bring them to life.

10

CHAPTER 2 = YOUR FIRST GAME: DEVILISHLY EASY

* | Evil Clutches

Figure 2-1. Here'’s the Evil Clutches game in action.

Sprites
In Game Maker, pictures of dragons, demons, and other game objects are all called sprites.
Sprites are one kind of resource used in games, and they can be made from images that have
been created in art packages or downloaded from the Internet. Game Maker includes a simple
sprite editor for drawing your own sprites, but you can use any drawing package you like for
this purpose. However, creating sprites is time consuming, so we've already provided profes-
sionally drawn sprites for each game.

If you've not done so already, start up Game Maker. Figure 2-2 shows the (rather empty)
main window that appears.

Note If your window doesn’t look exactly the same as shown in Figure 2-2, then you’re probably running
Game Maker in Advanced mode. To switch to Simple mode, choose Advanced Mode from the File menu
and the checkmark beside it will disappear.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

* Game Maker 6.1 Simple: =new game>

File Edit Resources Scripts Run Window Help

UBH P> €9E@0 0 o |
- Sprites

| Sounds

[Backgrounds
) Obijects

) Rooms

L |ﬂ Game Information
@ Global Game Settings

Figure 2-2. In the main window of Game Maker (in Simple mode), the menu and toolbar runs
along the top of the window and a list of resources down the left side.

The left side of the window shows the different types of resources that make up the game:
sprites, backgrounds, sounds, and so forth. These are currently empty, but the names of new
resources will appear here as they are added to the game. The menu bar along the top of the
window contains all the commands that allow us to work with resources—although most

common tasks can also be accessed using the buttons on the toolbar. We’ll begin by using the
Create Sprite command to create a new sprite.

Creating a new sprite resource for the game:

1. From the Resources menu, choose Create Sprite. The Sprite Properties form appears,
like the one shown in Figure 2-3.

Q__Sprite Properties

Mame: | zpritel

B Load Sprite

Width: 32 Height: 32
Mumber of subimages: 0

Tranzparent

& OK

Figure 2-3. Open the Sprite Properties form for a new sprite.

11

12

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

2. Click the Name field, where it currently says spriteo. This is the default name created
by Game Maker for the new sprite, but you should rename it to sprite dragon.

3. Click the Load Sprite button. This opens the standard Windows file requester.

4. Select the required image using the file requester. The image for the dragon is called
Dragon.gif, and you'll find it in the Resources/Chaptero2 folder on the CD. Your Sprite
Properties form should now look like Figure 2-4.

Note Always avoid using spaces and punctuation in names for resources as they will confuse Game
Maker when you try to use some of its more advanced functions later on. You can use the underscore ()
symbol instead of spaces, which is usually found on the same key as the minus symbol (press Shift and the
minus key).

B Sprite Properties

Mame: ilsprite_dragon

B Load Sprite

‘width: 135 Height: 150
Mumber of subimages; &

Shaw: n E]

Tranzparent

& OK

Figure 2-4. The Sprite Properties form looks like this after we load the dragon sprite.

5. Click OK to close the form. You have now created a sprite.

The dragon sprite should now have been added to the list of sprites in the resource list. If
you ever need to change a resource, you can reopen its properties form by double-clicking on
its name in the resource list. Do this now and take another look at the dragon sprite’s proper-
ties (Figure 2-4).

The form shows that there are six subimages to this sprite. Sprites often consist of several
images shown one after the other to create the illusion of movement. If you move through the
subimages using the blue arrow button, you will notice that there are actually only two differ-
ent images for this sprite. The extra copies make sure that the dragon doesn't flap its wings too
quickly when it's animating.

The checkmark next to the Transparent property means that the background of the
dragon sprite is see-through. Most sprites are set to transparent so that the surrounding rec-
tangle won't be drawn when the sprite appears in the game. Figure 2-5 shows the difference
that the Transparent option makes—the advantages are obvious to see!

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

Figure 2-5. Here'’s the dragon sprite with the Transparent option set (left) compared to the same
dragon without the Transparent option (right).

Note Game Maker works out which color to make transparent based on the color in the bottom leftmost
corner of each image. This is worth remembering when you want to create your own sprites.

Okay, let’s create the other sprites for the game in the same way.

Creating the remaining Evil Clutches sprites:
1. From the Resources menu, choose Create Sprite.
2. In the Name field in the Sprite Properties form, type the name sprite boss.
3. Click the Load Sprite button and choose the file Boss.gif.
4. Click OK to close the Sprite Properties form.

5. Now create a demon sprite, baby sprite, and fireball sprite using the Demon. gif,
Baby.gif, and Fireball.gif files in the same way. Give each sprite an appropriate
name (using only letters and the underscore symbol).

This completes all the sprites needed to create the Evil Clutches game.

Objects

Sprites don’t do anything on their own; they just store pictures of the different elements in the
game. Objects are the parts of the game that control how these elements move around and
react to each other. We'll begin by creating our first object to tell Game Maker how we want
the demon boss to behave.

The Boss Object

The following steps create a new object and assign it a sprite so that Game Maker knows how
it should look on the screen.

13

14

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

Creating a new object and assigning it a sprite:

1. From the Resources menu, choose Create Object. An Object Properties form like the
one in Figure 2-6 appears.

[} Object Properties |:”E”Z]
Name: [lobject! | Events: Actions: 'MUVE : 3
L ==

Sprite. ' l
<no sprites = lzl g.

0

= Bl @ E
Vizible [Solid Jump i
-

=
E

K [
—

o

3

an
Delete Change

Figure 2-6. Open the Object Properties form for your new object.

2. In the Name field, give the object a name. You should call this one object boss.

3. Click the icon at the end of the sprite field and a list of all the available sprites will
appear. Select the sprite boss sprite.

Caution Always make sure that you give your object resources names that are different from your sprite
resources. Ending up with an object and a sprite both called “dragon,” or two objects called “demon,” can
confuse Game Maker when you try to use its more advanced functions later on. Adding prefixes like “sprite_
or “object_” to names is a good way to achieve this without having to think of new names.

Events and Actions

Game Maker uses events and actions to specify how objects should behave. Events are impor-
tant things that happen in the game, such as when objects collide or when the player presses a
key on the keyboard. Actions are things that happen in response to an event, such as changing
an object’s direction, setting the score, or playing a sound. Game Maker games are basically
just a collection of objects with actions to tell them how they should react to different events.
Therefore, to set the behavior of an object in Game Maker you must define which events the
object should react to and what actions they should perform in response.

The boss object’s lists of events and actions are currently empty. We're going to begin by
adding an event and action that will start the boss moving up the screen at the beginning of

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

the game. This will be complemented by an action that reverses the vertical direction of the
boss in the event that it collides with the edge of the screen. As a result, the boss will continu-
ally move up and down between the top and bottom of the screen.

Adding a create event for the boss object:

1.

Click the Add Event button. The Event Selector appears, as shown in Figure 2-7.

EventSelecor [x
o LCreate] ‘:j Mouze
_iJl Destray]u Other
;3 Alarm][—‘ Draw
5 Step][.& Kep Press
- Collizsion][5 Key Belease
@ Kevboard][¥ Cancel

Figure 2-7. Click Add Event to open the Event Selector pop-up form.

Click the Create event to add it to the list of events. A new event is automatically
selected (with a blue highlight) in the event list, as shown in Figure 2-8. This means
we're already looking at this event’s Actions list alongside it (which is currently empty).

O Object Properties

. - Move 3

Narme: Events: Actions: =
‘§ Isprite_boss a @ @
El

Vizible [Solid ~Jum)

(2] K]

| AR | 24008 | |04jU0D | Zuew | puew

" 0K Add Event
Delete Change

Figure 2-8. This is how the Object Properties form should look once the name, sprite, and
Create event have been added.

. Next you need to include the Move Fixed action in the list of actions. To do this, press

and hold the left mouse button on the action image with eight red arrows, drag it to the
empty Actions list box, and release the mouse button. An action form will then pop up
asking for particular information about this action (see Figure 2-9).

15

16

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

Applies to

EE @ elf
() Other
() Object:

(=] #]a]
Directions: E]E]
L) o]]

Speed: i g

[Relative

o

Figure 2-9. Here'’s the action form for the Move Fixed action.

Note Whenever we use an action in the instructions, that action’s image is shown in the left margin to
help you find the correct one.

4. Select the up arrow and enter a value of 8 for the Speed. This will make the object move
vertically 8 pixels (the tiny squares that make up a monitor display) for every step that
it takes.

5. Press OK to close the action form and it will be included in the list of actions.

Note All of Game Maker’s actions are organized into tabbed pages of icons on the right of the Actions
list. Browse through the different action tabs to see all the various actions and hold your mouse over one to
reveal its name.

This event should start the boss moving upward. Now we’ll add an event to reverse an
object’s vertical direction when it collides with the edge of the screen. This event is called the
Intersect Boundary event because it gets called when the object’s sprite intersects the screen’s
boundary by being partly in and partly out of the screen.

Adding an intersect boundary event for the boss object:

1. Click the Add Event button.

2. Choose Other from the Event Selector pop-up form and select Intersect boundary
from the drop-down menu that appears. This action will then be added and selected
in the list of events.

3. Include the Reverse Vertical action in the list of actions for this event. You'll now see

the form shown in Figure 2-10.

Reverse Vertical

Applies to

& Self
) Other
() Object:

Figure 2-10. The action form for the Reverse Direction action looks like this.

4. Nothing needs changing on this form, so just click OK. The Object Properties form for
the boss object now looks like the one shown in Figure 2-11.

D Object Properties

Mame: | object_boss

Sprite

‘g Isprite_boss a

Visible [5elid

Ewvents:

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

Actions:

o Create

Boundary

Add Event
Delete Change

Reverse vertical direction

- Move

o
=] @ b

~Jum)

EEE
EE

2A0W

| AR | 24008 | |04U0D | Zuew | puew

Figure 2-11. In the Object Properties form for the boss object, we've added two events,

along with their corresponding actions.

17

18

CHAPTER 2 = YOUR FIRST GAME: DEVILISHLY EASY

These are all the events and actions we need for the boss right now. You can switch
between the different events by clicking on them in the Events list. The selected event
is highlighted in blue and the actions for that event are then shown in the Actions list.
You can edit the properties of each action by double-clicking on them, but we're done
with the boss object for now.

5. Click OK at the bottom left of the form to close it.

The Dragon Object

Now let’s turn our attention to the heroine of the game. We’ll begin by creating an object for
the dragon in the same way as for the boss.
Creating a dragon object:

1. From the Resources menu, choose Create Object.

2. Give the object a name by entering object dragon in the Name field.

3. Select the sprite dragon sprite from the drop-down sprite menu.

The dragon also needs actions to make it move up and down the screen, but this time
only when the appropriate keys are pressed on the keyboard. We do this by using keyboard
events.

Adding keyboard events for the dragon object:

1. Click the Add Event button.

2. Choose a Keyboard event and select <Up> from the pop-up menu (to indicate the up
arrow key).

3. Include the Move Fixed action in the Actions list.
Lol
4,

In the action form, select the upward direction and set Speed to 16.

5. Repeat the previous process to add a Keyboard event for the <Down> key that
L

includes a Move Fixed action with a downward direction and a speed of 16. The Object
Properties form should now look like the one shown in Figure 2-12.

We just need one more event and action to make the dragon’s movement work correctly.
Our Keyboard events will start the dragon moving when the player presses the arrow keys, but
there are currently no events to stop it from moving again when the keys are no longer being
pressed. We use the Keyboard, <no key> event to test for when the player is no longer pressing
any keys.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY 19

D Object Properties

Name: |abject_dragon Ewvents: Actions;

=
=]
=

Sprite Start moving in a direction
5 Isprite_dragon =

Visible [5elid

e [55 [6))

| AR | 24008 | [Tt} | zu!eu;a [N

& 0K Add Event
Delete Change

Figure 2-12. The Object Properties form for the dragon looks like this once we add the <Up> and
<Down> events.

Adding a no key event for the dragon object:
1. Click the Add Event button.
2. Choose a Keyboard event and select <no key> from the pop-up menu.
3. Include the Move Fixed action in the Actions list for this event.

4. Select the center square in the action form, to indicate no movement, and set Speed to
0. The form should now look like Figure 2-13.

Applies ta
1 RO T

) Other

() Object:

(s]¢]a]
[a])
L) o]]

Speed: | i}

Directions:

EiReRe Figure 2-13. These settings stop the

+ 0K movement of the dragon.

5. That’s all the actions we need to make our dragon move up and down, so click OK to
close the Object Properties form for the dragon object.

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

Caution When setting a Move Fixed action with a speed of 0, you must also select the center square of
the direction grid. If no direction square is selected at all, then the action is ignored!

Rooms

Our dragon and boss objects are all ready to go now, but in order to see them we need to put
them into a level. Levels in Game Maker are made using rooms, and putting objects into a
room defines where they will appear at the start of the game. However, not all objects need to
be there at the start of the game, and they can be created on the fly as well (fireballs, for exam-
ple). Let’s create a new room.

Creating a new room resource:

1. Select Create Room from the Resources menu. A Room Properties form will appear
(see Figure 2-14).

[= Room Pro perties

o 9 | [] = Snapi 5] Shap Y’
objects .settings. backgrounds | | 5

Obiject to add with left mouse:

iobiect_dragon é{‘

Left mouse button = add |—
+ < dlts = o snap
+ 2 5hifts = mulnple
+=Chl= = move

Right mouse button = delete
+ < 5hifts = delete all
+ 2Cri= = popup menu

Delete underlying

SR8 yi

Figure 2-14. The Room Properties form for a new room opens.

Note If there are sliders along the edges of the room grid, then the window is not currently large enough
to see the entire room. Maximize the Game Maker window and the Room Properties form to see more of the
room, or use the sliders to scroll around the entire room.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

2. Click the settings tab in the top left of the form.
3. Enter a name for the room in the Name field. Call this one room first.

4. Enter a caption for the title bar of the window when the game is running. “Evil
Clutches” seems appropriate for this game. The room settings should now look like
Figure 2-15.

| obiects | seltings | backgrounds |
Mame: imomjﬂg ?
Caption for the room:
|Evil Chutches

Width: (840

Speed:ISD

Figure 2-15. Here’s the settings tab of the Room Properties
form, with the name and caption filled in.

Now we can place our objects in the new room.

Adding a dragon and boss to the room:

1. Click the objects tab in the top left of the form. You should see that the dragon object is
already selected as the object “to add with left mouse.”

2. Click on the room grid with the left mouse button. An instance of the dragon object
will be placed with its top-left corner at the point at which you click. The position you
place the dragon becomes its starting position in the game, so put just one dragon
close to the left boundary of the room area. If you add it in the wrong place, use the
right mouse button to remove it again.

3. Click on the dragon’s image on the objects tab (or on the image of the pop-up menu
next to where it says object dragon) and select the boss object from the menu that
appears.

4. Place an instance of the boss close to the right edge of the room, but make sure that
the whole of his sprite is completely inside the room—otherwise his events will not
work correctly! The room should now look something like Figure 2-16.

21

22

CHAPTER 2 = YOUR FIRST GAME: DEVILISHLY EASY

[= Room Pro perties T'E]EJ

[

L

[

Object to add with left mouse: s ||

[obiect_boss =4

Laft mouse bution = add

+dits = no snap

+ =5hift= = multiple

+=Chi= = move

FRight mouse button = delete

+ «Shits = delete all
+=Chi= = popup menu

Delete underlying

el w16

Figure 2-16. The room with the dragon and the boss looks like this.

Our very first version of the game is now ready. Click the green checkmark in the top-left
corner of the form to close it and you can see the results of your labor-. . .

Tip You can also click and hold the mouse button to move instances within a room.

Save and Run

It’s always a good idea to save your work as often as possible—just in case your computer
crashes. In case you haven't already worked it out for yourself, then the steps for this process
are given here. However, in the future you'll have to remember to save your work regularly
yourself! This works in the same way as most programs.

Saving your work and running the game:

1. Choose Save from the File menu (or click the disk icon).

2. The first time you save the game, you will be prompted for a location and filename in
the normal way. Note that Game Maker files always end with the extension .gm6. Save
this game in a place where you can easily find it again (on the desktop, for example).

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

3. To run the game, select Run Normally from the Run menu. After a brief pause, a game
window should appear, like the one shown in Figure 2-17.

Evil Clutches

Figure 2-17. Here's the first version of the Evil Clutches game in action.

You should now be able to move the dragon up and down using the arrow keys, and the
boss should float up and down by itself. If your game doesn’t work in this way, then you might
want to check through all your steps in the previous sections. You may also need to ensure that
your game window is selected (by clicking on it with the mouse) before your keyboard input
has any effect. All games we make in the book are stored on the CD in stages, and the current
version of the game can be found on the CD in the file Games/Chapter02/evili.gmé.

Although we now have a running game, it's not much fun to play yet as there are no goals
or challenges. We'll spend the remainder of the chapter turning it into a playable game. Press
Esc to stop the game.

"Tip Pressing F4 while the game is running will maximize the game to fill the entire screen. Press F4 again
to return to the windowed version.

23

24

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

Instances and Objects

So far we have two object resources in our game and two characters appearing on the screen.
However, there is an important distinction to be made between object resources and instances
of objects that appear on screen. It may seem odd, but now that we have made dragon and
boss objects, we can put as many instances of dragons and bosses on the screen as we like. Try
it—go back and place more dragons and bosses in the room. If you run the game, you will find
that they all behave in exactly the same way as the original instances! (Don’t forget to remove
them again afterward using the right mouse button.) A good way to think of the relationship
between objects and instances is to think of objects as jelly molds and instances as the jellies
that you make with them. You only need one mold to make any number of jellies, yet the mold
defines the appearance of all of them (see Figure 2-18). From now on we will talk about
instances and objects in this way, so it is important that you appreciate the difference.

Figure 2-18. Object resources are like jelly molds, and they can be used to create any number of
object instances on the screen at once.

Demons, Baby Dragons, and Fireballs

To create some challenges and goals, we're going to need to bring our remaining objects into
the game. Let’s start by giving the dragon the ability to breathe fireballs—as dragons often do!

The Fireball Object

To create the fireball object you'll need the fireball sprite. If you didn’'t get around to doing this
earlier, then quickly flick back a few pages and add it in the way that was described in the
“Sprites” section. You should remember the basic steps required to making a new object by
now, but here they are one more time, just in case.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY 25

Creating the fireball object:
1. Select Create Object from the Resources menu.
2. Call the object object fireball.
3. Select the fireball sprite.

We now need to think about how we want fireballs to behave. When the dragon creates
a fireball, we want it to move across the screen toward the boss and get destroyed when it
reaches the other side of the screen.
Adding the fireball object’s events:

1. Click the Add Event button and choose the Create event.

2. Include the Move Fixed action in the Actions list. Select the right arrow to indicate the
P direction and set Speed to 32 (fireballs fly fast!).

3. Click the Add Event button again, select Other events, and pick Outside room.

4. Select the mainl action tab and include the Destroy Instance action in the Actions
list. In the action form that pops up, simply click OK. The fireball Object Properties
form should now look like Figure 2-19.

5. Click OK to close the fireball Object Properties form.

D_ Object Properties _ EHE”E
Mame: | object_fireball Events: Actions: Rl g
Sprite o Create Destray the instance @ @ @
.:3 isprite_fireball li i g'
~Sprite —~

[visible [Solid |§|

- Sounds

PE@®

- Roams

ElE =
Eee

| AR | 24008 | Jouoa | Zuiew

& 0K Add Event
Delete Change

Figure 2-19. The properties form for the fireball object should now look like this.

Caution It is always a good idea to make sure that instances are deleted when they’re not needed any
more (when they go off the edge of the screen, for example). Even though you can’t see them, Game Maker
still has to spend time updating them, and too many instances will eventually slow down the program.

26

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

Now we need to tell the dragon object to create instances of the fireball object when the
player presses the spacebar. We do this in a similar way to the events that make the dragon
move, but this time using a Key Press event rather than a Keyboard event. Keyboard events
happen as long as the player continues to hold down the key, but Key Press events happen
only once when the key is first pressed. Using a Keyboard event for the fireballs would create
a continuous stream of fireballs and make the game too easy, so that’s why we're using Key
Press instead.

Creating a Key Press event for the dragon object:

1. Double-click the dragon object in the resource list (not the dragon sprite). This will
bring back the Object Properties form for the dragon object.

2. Click the Add Event button. Select the Key Press event and then choose <Space> from
the pop-up menu.

3. Select the mainl action tab and include the Create Instance action in the Actions list.

4. In the action form that appears, we need to specify which type of instance to create
and where on the screen it should be created. Select the fireball object from the menu,
enter a value of 100 into X and 10 into Y, and select the Relative checkbox. Figure 2-20
shows what the completed action form should look like.

5. Click OK to close the action form and click OK again to close the Object Properties
form.

Applies to
) Self

) Other
) Object:

object: iobiect_fireball |
w100 |
" I‘ID |

m

Fielative

Zox

Figure 2-20. Note that we checked the Relative property to make the fireball appear
relative to the position of the dragon.

The x and y values you just entered are screen coordinates, which are used to indicate
positions on the game screen. Screen coordinates are measured in pixels (the tiny squares that
make up a monitor display), with x values indicating the number of pixels horizontally, and y
values indicating the number of pixels vertically.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY 27

We need to select the Relative option because the fireball needs to be created on the
screen in front of the dragon, in other words, relative to the dragon’s position. However, the
dragon’s position is measured from the top-left corner of its sprite—just above its wings—and
this would be a crazy place for the fireball to appear! Giving an x-coordinate of 100 moves the
fireball across 100 pixels to the right (to just above its head) and a y-coordinate of 10 brings it
10 pixels down. This creates the fireball right in front of the dragon’s mouth and exactly where
we need it (see Figure 2-21). Test the game now to check that you can use the spacebar to
shoot fireballs, and that they appear in the correct position.

100 Pixels

10 Pixels

Figure 2-21. The fireball needs to appear from the dragon’s mouth, which is 100 pixels across and
10 pixels down from the origin of the dragon’s sprite.

The Demon Object

The demon object will work in the same way as the fireball, except that demons fly from right
to left and are created by the boss. Also, to make demons a bit more interesting, we’ll start
some moving diagonally as well as horizontally. Those that head diagonally for the top or
bottom of the screen will need to reverse their vertical direction when they intersect the
boundary—like the boss object does. We'll also need to destroy demons when they go outside
the room, like the fireball. Next we provide the steps you need to do all of this; notice that
we've started to shorten the steps that you should be familiar with by now.

Creating the demon object:
1. Create a new object called object demon and give it the demon sprite.

2. Add a Create event and include the Move Fixed action.
P
3.

Select all three left-pointing direction arrows and set Speed to 12. Selecting more than
one direction causes Game Maker to randomly choose between them when an
instance is created. The action form should now look like Figure 2-22.

28 CHAPTER 2 = YOUR FIRST GAME: DEVILISHLY EASY

4. Add an Intersect boundary event (in the Other events) and include the Reverse
Vertical action in it.

5. Add an Outside room event (also in the Other events) and include a Destroy Instance
action in it.

Applies to

EE @ elf
) Other
) Dbject:

Directions: E]
(] %]

Speet 14| Figure 2-22. In the move action for the demon,
note that all three arrows to the left are
EIRefs pressed, so a random direction out of the
o OK three is selected for each demon created.

The demons will now bounce back and forth between the top and the bottom of the
screen, but we also need them to react to collisions with other instances. For this we use a
collision event, which happens when two sprites of different objects overlap on the screen.
The first collision event we need is for when a demon collides with a fireball. This event should
destroy the demon, and reward the player by increasing their score. There are a number of dif-
ferent actions dealing with scores, health, and lives in the score actions tab. As soon as the
score changes, it will automatically be displayed in the game window caption.

Adding an event to the demon object for colliding with the fireball:

1. Click the Add Event button, choose the Collision event, and select the fireball object
from the pop-up menu.

. Include the Destroy Instance action from the mainl action tab.

3. Also include a Set Score action from the score tab. This should automatically appear
below the Destroy Instance action in the Actions list. Lists of actions like this are
carried out one after another, starting from the top of the list and working down.

e
] [&]
N

4. Enter a value of 100 in the Set Score action form, and click the Relative property. This
property makes the action set the score relative to the current score, so 100 will be
added to the score rather than setting the score to 100. See Figure 2-23.

If a demon collides with the dragon, then the game is over. When this happens, we want
to bring up a high-score table and (when appropriate) let the player enter their name. After
showing the high-score table, we want to restart the game. Conveniently, Game Maker pro-
vides a Show Highscore event that handles most of this automatically.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

=]
9‘3

new score; | 100

A Figure 2-23. We add 100 to the score by setting

¥ Ok the Relative property.

Adding an event to the demon object for colliding with the dragon:
1. Add a Collision event for colliding with the dragon object.
2. Include a Show Highscore action from the score tab.
3. Click OK to keep the default settings for this action’s properties.

4. Also include a Restart Game action from the main2 tab. This action has no properties.
&

5. The object properties form for the demon should now look like Figure 2-24. Check that
you have included all the demon object’s events. We're done with this object for now,
so click OK.

O Object Properties

Mame: |ohject_demon Ewents: Actions;

Sprite Create Shaw the highscore table
3 i E " object_dragaon =
sf Ispnte_demon = cbiect_dhagon Restart the game o
- i T8 object_firehall 3

:

4 Outside Room =
=
ka2

Visible []5oid @ Intersect Boundary

| AR | 24008 | |oauoa

& 0K Add Event
Delete Change

Figure 2-24. The Object Properties form for the demon object now looks like this.

29

30

CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

Summoning Demons

That’s it for the demon, but we still need the boss to create instances of the demon in the first
place. However, we don’'t want the demons to appear at regular intervals because this would
make the game too easy. Instead, we want there to be a random chance that a demon is cre-
ated at each “step” of the game. A step is essentially just a short period of time in which
everything on the screen moves a very small distance. There are normally 30 steps in every
second, so we only need there to be a very small chance that a demon is created in each step.
We achieve this by using a Test Chance action, which acts like throwing a die with many sides
(see Figure 2-25). In each step we throw the die, but only one side will trigger the chance
action and create a demon. In this way, we create a steady, but unpredictable, flow of demons.

Figure 2-25. The more sides a die has, the less often Game Maker will throw the one side that
triggers the Test Chance action.

Adding a step event to the boss object:

1. Double-click the boss object in the resource list to bring back its Object Properties
form.

2. Click the Add Event button, select the Step event, and choose Step again from the pop-
up menu.

3. Include the Test Chance action from the control tab. Set the sides of the die to 50 in
the action’s properties.

4. Also include the Create Instance action in the Actions list for this event. Set the prop-
erties to create a demon object and select the Relative option, so that the demon is
created relative to the boss’s position. The event should now look like Figure 2-26.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

D Object Properties

Mame: |0biect_boss | | Ewvents: Actions: el
Sprite o Create @With chance 1 out of 50 perfa @ @
i r“""""""'_“ = Step
‘s spiite_boss & Create instance of object objer
Intersect Boundar
r 1 Sprte

[visible [5olid lgl |§|

- Sounds =

~Rooms ——

Ee6

l AREIR [2008 l|0w.|0::| [ZLI!EUJ[Jligw BA0U [X|

& 0K Add Event |
Delete Change

Figure 2-26. In this step event, demons are randomly created.

The Test Chance action is an example of a conditional action. Conditional actions control
the action that immediately follows them so that it is only performed if some condition is met.
So in this case the Create Instance action is only performed if the Test Chance action rolls a 1
using a 50-sided die—otherwise it is skipped.

Click OK, save your work, and run the game to test it. Demons should now be appearing,
and you should be able to shoot them with your fireballs to rack up your score in the window
caption. When you eventually get hit by a demon, the high-score table will be displayed and
the game restarts. How long can you survive?

The Baby Dragon Object

We now have a game with two goals: shooting demons and staying alive. However, it’s still not
much fun to play as it’s far too easy to provide any real challenge. To increase the challenge,
we're going to occasionally throw in a baby dragon along with the demons. If the player shoots
a baby dragon, they will lose 300 points, but if they rescue one they will gain 500 points. This
will mean that the player will have to be much more careful about when they shoot, thereby
increasing the challenge of the game.

Creating a new baby dragon object and its events:
1. Create a new object called object baby, and give it the baby dragon sprite.

g?; 2. Add a Create event for the object and include a Move Fixed action in it. Set it to move
b left with a Speed of 8 (slower than the demons to make life harder).

3. Add an Outside room event (in Other events) and include a Destroy Instance action
from the mainl1 tab.

4. Add a Collision event with the fireball object and include a Destroy Instance action in
that as well.

32 CHAPTER 2 © YOUR FIRST GAME: DEVILISHLY EASY

5. Also include a Set Score action in the collision event with a value of -300 and the
2] Relative property selected. This will subtract 300 from the player’s score.

6. Add a Collision event with the dragon object and include the Destroy Instance action
in it.

7. Also include the Set Score action with a value of 500 and the Relative property

selected. This will add 500 to the player’s score. The baby dragon object should now
look like Figure 2-27.

8. Click OK to close the properties form.

9| Object Properties

X

=== . =]
Mame: | object_baby | Events: Actions: s
Sprite [Create Destray the instance

& isDrite_bab}' a ; DEDLEDT Set the zcare relative to 500
T 1
Chew) CEay | |*¢ 3 cbecfictd

@ Dutside Room “Lives —

[“] visible [5elid lil E!

| Zuew | [N | Ao

- Health

EH® =

BIP | guoos (040D

Lee]

«" 0K Add Event
Delete Change

Figure 2-27. The Object Properties form for the baby dragon object looks like this.

Now we need to make the boss randomly release baby dragons as well as demons. This is
exactly the same as for the demons except we will use a value of 100 for the die so that they are

created less often.
Editing the boss object to randomly create baby dragons:
1. Reopen the Object Properties form for the boss object.
2. Click on the existing Step event to select it and view its actions.

3. Include another Test Chance action in the Step event. Set the sides of the die to be 100
in the action’s properties.

4. Include the Create Instance action below the new Test Chance action in the Actions
list. Set the properties to create a baby object and select the Relative option.

That completes the second phase of our game! All the gameplay elements are now in
place. Save the game and carefully test it to make sure it works correctly. You'll also find the
current version of the game on the CD in the file Games/Chapter02/evil2.gmé.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

Backgrounds and Sounds

In this section we'll finish off the look and feel of our game by adding background graphics,
sound effects, and music. As you'll see, these finishing touches have quite a dramatic effect
on how professional the game seems.

A Background Image

The first improvement we’ll make is to add a background to the room. Backgrounds are
another type of resource, like sprites, rooms, and objects. We've created an image that is
exactly the same size as the game window (640X480 pixels). This needs to be loaded into a
new background resource, which can then be assigned to a room.

Creating a new background resource and assigning it to a room:

1. Select Create Background from the Resources menu.

2. Call the background background cave, and click the Load Background button. Select
the Background.bmp image from the Resources/Chaptero02 folder on the CD. The Back-
ground Properties form should now look like Figure 2-28.

3. Click OK to close the Background Properties form.

IS

. Reopen the properties form for the room by double-clicking on it.

5. Select the backgrounds tab in the Room Properties form. Click the menu icon to the
right of where it says <no background> and select the new background from the pop-
up menu. The Room Properties form now looks like Figure 2-29.

(=7]

. Close the Room Properties form by clicking the green checkmark in the top-left corner
of the form.

MName: | ackground_cave

j Load Background

‘width: 640 Height: 480

[Transparent

<z» Edit Background

Figure 2-28. The Background Properties form allows you to load and edit backgrounds.

33

34

CHAPTER 2 = YOUR FIRST GAME: DEVILISHLY EASY

qu:l

' | i) Snapg:"i.s. SnapI;T‘T‘é @' PaE

ohjects | settings | backgrounds | |

Diraw backaround eolar

] —

Background 0|
|Background 1
|Background 2
|Background 3
|Background 4
Background §
|Background B
\Background 7

i
Visible when room starts i ‘ . ||

[Fareground image []
B o B

Tile Har % (o

Tile et Yo |0

[5tetch

Har, Speed: [0
Yert Speed: [0

Figure 2-29. The room looks a lot more atmospheric once you add the background to the room.

Background Music

The next step is to add some atmospheric music. Sounds are another kind of Game Maker
resource for including both sound effects and music. We need to create a sound resource for
the music and then set up an action to start the music playing. We'll include this action in the
Create event of the boss object so that it starts playing at the beginning of the game, but it
would work just as well in the dragon object too.

Creating a music sound resource and playing it in the boss object:

1. Select Create Sound from the Resources menu and call it sound music.

2. In the properties form that appears, click Load Sound and select the Music.mp3 file
from Resources/Chapter02 on the CD. The Sound Properties form should now look
like Figure 2-30.

3. Close the Sound Properties form by clicking OK.
4. Reopen the Object Properties form for the boss object.

5. Click the existing Create event to select it and view its actions.

6. Include a Play Sound action (mainl tab) in the Create event.

CHAPTER 2 " YOUR FIRST GAME: DEVILISHLY EASY

7. In the action properties, select the music sound and set the Loop property to true. This
makes the music loop back to the start when it finishes. The sound action form should
then look like Figure 2-31.

8. Click OK to close the action, and click OK again to close the boss object.

B Sound Prope... |- |
Name: | zound_music

(o] DS

Flerame: Musinimg Figure 2-30. The Sound Properties form allows
you to load, preview, and save sound files.

sound: | sound_music | =

loop: | true | =,

e e e s Figure 2-31. This sound action loops

[ok the background music.

Sound Effects

Adding sound effects is another way to enhance the atmosphere of a game, but they also help
to inform the player about their actions. For now, we’ll just add two sound effects to our game:
one for shooting a demon and one for shooting a baby dragon. The baby’s sound effect will be
much higher-pitched and cuter than the demon’s so that the player instantly knows they have
done something wrong.
Creating and playing sound effects for shooting babies and demons:

1. Create a new sound resource called sound demon.

2. Load the Demon.wav file from Resources/Chapter02 on the CD.

3. Close the Sound Properties form.

35

36

CHAPTER 2 = YOUR FIRST GAME: DEVILISHLY EASY

4. Reopen the Object Properties form for the demon object and select the existing
Collision event with the fireball object.

5. Include a Play Sound action in the collision event and select the new sound. Leave the

Loop property set to false.

6. Close the action form and demon Object Properties form.

7. Repeat the previous steps to create a sound resource for Baby.wav. Include an action to

play it in the baby dragon object’s collision event with the fireball.

Congratulations

Congratulations on completing your very first game using Game Maker! If you need it, then
you’ll also find the final version of the game in the file Games/Chapter02/evil3.gmé, on the CD.
When you've finished a game, you can turn it into an executable by choosing Create Exe-
cutable from the File menu. Executables don’'t need Game Maker to run, so it’s easy to give
them to your friends or put them on a website.

Now that you're a bit more familiar with Game Maker, why not try making some changes
to the game to see what effects they have? You could add new objects to the game—there’s an
image for an “evil baby” in the resources directory that you can use. Perhaps these could be
demons in disguise? Also try changing the movement speeds of the different objects. This can
have a big impact on the difficulty of the game, as can changing the number of sides on the
dice in the Test Chance actions. Balancing the settings for all these parameters is one of a
game designer’s most important jobs, and we'll talk more about this in Chapter 11.

This chapter has introduced you to the basic elements of Game Maker. We've looked at
different kinds of game resources and seen how events and actions are used to control the
behavior of objects. However, we've only just scratched the surface; there is still much more to
discover about Game Maker and lots of even better games to make. Our journey continues in
the next chapter with a trip to a moon or two as we learn more about events and actions by
playing with spaceships.

PART 2

Action Games

There aren’t many jobs where you try to put your customers into dangerous situations,
but asteroid fields are just occupational hazards in this line of work!

CHAPTER 3
EEN

More Actions: A Galaxy of
Possibilities

We hope you enjoyed making Evil Clutches and that it gave you a sense of how easy Game
Maker is to use. However, you can achieve so much with a bit more knowledge, so let's move
on to our second project and do something a little more adventurous.

Designing the Game: Galactic Mail

As before, it helps to set out a brief description of the game we want to create. We'll call this
game Galactic Mail because it’s about delivering mail in space. Here’s the design:

You play an intergalactic mail carrier who must deliver mail to a number of inhabited
moons. He must safely steer a course from moon to moon while avoiding dangerous asteroids.
The mail carrier is paid for each delivery he makes, but pay is deducted for time spent hanging
around on moons. This adds pressure to the difficult task of orienting his rickety, old rocket,
which he cannot steer very well in space.

When the rocket is on a moon, the arrow keys will rotate it to allow the launch direction to
be set. The spacebar will launch the rocket, and the moon will be removed from the screen to
show that its mail has been delivered. In flight, the rocket will keep moving in the direction it is
pointing in, with only a limited amount of control over its steering using the arrow keys. When
things move outside the playing area, they reappear on the other side to give the impression of a
continuous world. The player will gain points for delivering mail, but points will be deducted
while waiting on a moon. This will encourage the player to move as quickly as possible from
moon to moon. There will be different levels, with more asteroids to avoid. The game is over if
the rocket is hit by an asteroid, and a high-score table will be displayed. Figure 3-1 shows an
impression of what the final game will look like.

This description makes it possible to pick out all the various elements needed to create
the game, namely moons, asteroids, and a rocket. For reasons that you will see later, we’ll
actually use two different moon objects (for a normal moon and an occupied moon) and two
different rocket objects (for a “landed rocket” and a “flying rocket”). All the resources for this
game can be found in the Resources/Chaptero3 folder on the CD.

4

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

* Galactic Mail

Figure 3-1. The Galactic Mail game features moons, asteroids, and a rocket ship.

Sprites and Sounds

Let’s begin by adding all the sprites to our game. In the previous chapter, we saw that sprites
provide images for each element of the game. In this chapter, we’ll use some extra abilities of
sprites; however, before we can do this, you must set Game Maker into Advanced mode.

Setting Game Maker into Advanced mode:

1. If you are working on a game, you must save the game before switching modes.

2. Click the File menu and look for an item called Advanced Mode. If there is a check-
mark in front of it, then you are already in Advanced mode. Otherwise, click that menu
item to select it, and the main window should change to look like the one in Figure 3-2.

To make things simple, we’ll leave Game Maker in Advanced mode for the remainder of
the book, even though some of the options will only be used in the final chapters. Now we’re
going to start a new, empty game.

Note To start a new game, choose New from the File menu. If you are already editing a game that has
had changes made to it, you will be asked whether you want to save these changes.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

* Game Maker 6.1: <new game >

File Edit Resources Scripts Run Window Help
DAH P> @OELE RN Z@O O

i) Sprites

I Sounds

| Backgrounds
I Paths

i) Scripts

i) Fonts

i) Time Lines

| Objects

|=) Rooms

|ﬂ Game Information
4| Global Game Settings

€

Figure 3-2. In the main window of Game Maker in Advanced mode, there are a number of
additional resources on the left and an additional menu.

Our first step is to create all the sprites we need for the game. This works in the same way
as in the previous chapter, but this time we must complete a couple of additional steps. Each
sprite in Game Maker has its own origin, which helps to control the exact position in which it
appears on the screen. By default, the origin of a sprite is set to be located at the top-left cor-
ner of the image. This means that when you move objects around in the game, it is as if you
were holding them by their top-left corner. However, because the rockets in Galactic Mail
need to sit in the center of the moons, it will be easier if we change the origin of all our sprites
to be central.

Creating new sprite resources for the game:

1. From the Resources menu, choose Create Sprite. The Sprite Properties form with
additional Advanced mode options will appear, like the one shown in Figure 3-3.

2. Click in the Name field and give the sprite a name. You should call this one
sprite_moon.

3. Click the Load Sprite button. Select Moon.gif from the Resources/Chapter03 folder on
the CD.

43

44 CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

B Sprite Properties

Mame; Isprited | Precize collision checking
[] Smooth edges
B Load Sprite
[+] Preload texture
‘width: 32 Height: 32 Drigin
Mumber of subimages; 0 % |D | ¥ |-D_|

(&) Automatic () Full image
Transparent O Marual

L0 | miht0 |

o DK T0|:|I | ottom,. |

Figure 3-3. This Sprite Properties form shows the advanced options.

4, The controls for setting the origin are halfway down the second column of the form.
Click the Center button to move the origin to the middle of the sprite. You should now
see a cross in the middle of the sprite’s image indicating the position of the origin. You
can also change the origin by clicking on the sprite image with the mouse or typing in
the X and Y values directly.

5. Enable the Smooth edges option by clicking on the box next to it. This will make
the edges of the sprite look less jagged during the game by making them slightly
transparent.

6. Click OK to close the form.

7. Now create asteroid and explosion sprites in the same way using Asteroid.gif and
Explosion.gif (remember to center their origins too).

8. We'll need two sprites for the rocket: one for when it has landed on a moon and one
for when it is flying through space. Create one sprite called sprite landed using
Landed.gif and another called sprite flyingusing Flying.gif. Center the origins of
these two sprites as before.

Before closing the Sprite Properties form for this last sprite, click the Edit Sprite button.
A form will appear like the one shown in Figure 3-4. If you scroll down the images contained
in this sprite, you'll see that it contains an animation of the rocket turning about a full circle.
There are 72 different images at slightly different orientations, making up a complete turn of
360 degrees. We'll use these images to pick the correct appearance for the rocket as it rotates in
the game. We can use the Sprite Editor to change the sprite in many ways, but for now simply
close it by clicking the button with the green checkmark in the top left of the window.

Your game should now have five different sprites. Next let’s add some sound effects and
background music so that they are all ready to use later on.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES 45

& Sprite Editor

File Edit Transform Images Animation
w .
vID3SH B XL G| &=|2
: ~
S - l = ﬂ I
image 1 image 2 image 3 image 4
image 5 image B image 7 image 8 image 9
image 10 image 11 image 12 image 13 image 14
Frames: 72 Size: 48 x 45 Transparent

Figure 3-4. The Sprite Editor shows all the images of the rocket.

Creating new sound resources for the game:

1. Select Create Sound from the Resources menu. Note that the Sound Properties form
now has additional Advanced mode options, but we don’t need to worry about them
for now (some of these are only available in the registered version of Game Maker).

2. Call the sound sound_explosion and click Load Sound. Select the Explosion.wav file
from Resources/Chapter03 on the CD.

3. Close the form by clicking OK.

4. Now create the sound_bonus and music_background sounds in the same way using the
Bonus.wav and Music.mp3 files.

Adding all these resources at the start will make it easier to drop them into the game as we
are going along—so let’s get started on some action.

Moons and Asteroids

Both moons and asteroids will fly around the screen in straight lines, jumping to the opposite
side of the room when they go off the edge of the screen. In Game Maker this is called wrap-
ping, and it is done using the Wrap Screen action.

Creating the moon object:

1. From the Resources menu, choose Create Object. The Advanced mode Object Proper-
ties form has additional options and actions too (see Figure 3-5).

2. Call the object object moon and give it the moon sprite.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

0 Object Properties

. - 3
Name: |abject_moon Ewvents: Actions; MDVE - — %
e

Sprite

0 isprite_moon li @
B @

[#] Visible [150lid A

Depth: D—|
[] Persistent

Parent: i<no parent: Ii E
Mask: i<same a5 spriter li Path
d s

o =

- Steps

Delete Change

| AR | Bipa | 24008 | |0U0D | Zuew | puew

Figure 3-5. The Object Properties form for the moon object looks like this.
When a moon is created, we want it to start moving in a completely random direction.

Adding a create event to the moon object:
1. Click the Add Event button and choose the Create event.
2. Include the Move Free action in the Actions list for this event.
[

3. This action form requires a direction and a speed. Enter a Speed of 4 and type
random(360) in the Direction property. This indicates a random direction between
0 and 360 degrees. The form should now look like Figure 3-6.

== Applies ta
&) Self

) Other
) Dbject:
direction: | randarn(360] |
speed: |4 |
[Relative

Figure 3-6. Using the random command in a Move Free action will make the moons start
moving in a random direction.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

We also need to make sure that when the moon goes off the edge of the room, it reappears
at the other side.

Including a wrap action for the moon object:

1. Click the Add Event button, choose the Other events, and select Outside Room from
the pop-up menu.

2. Include the Wrap Screen action in the Actions list.

3. In the form that appears, you should indicate that wrapping should occur in both
directions (top to bottom and left to right). Now the form should look like Figure 3-7.

4. The moon object is now ready to go, so you can close the Object Properties form by
clicking OK.

Applies to

@ ekt
) Other
) Object:

direction: |in bath directions | =4

o

Figure 3-7. The Wrap Screen action properties form looks like this.

The asteroid object can be created in exactly the same way as the moon earlier. However,
to keep things neat, we want to make sure that asteroids appear behind other objects when
they cross paths with them on the screen. Instances of objects are usually drawn in the order
in which they are created, so it is hard to be sure whether one type of object will appear in
front of another. However, you can change this by setting an object’s depth value. Instances
with a smaller depth are drawn on top of instances with a larger depth, and so appear in front
of them. All objects have a default depth of 0, so to make sure the asteroids appear behind
other objects we simply give them a depth greater than 0.

Creating the asteroid object:
1. Create a new object called object asteroid and give it the asteroid sprite.

2. On the left-hand side there is a text field labeled Depth. Enter 10 in this field to change
the depth of the object from 0 to 10.

47

48 CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

g?; 3. Add the Create event and include the Move Free action in the Actions list. Type
| random(360) in the Direction property and enter a Speed of 4.

4. Add the Other, Outside Room event and include the Wrap Screen action in the
Actions list (indicate wrapping in both directions).

Note From now on we will use commas in event names, such as Other, Qutside Room to show the two
stages involved in selecting the event.

5. The Object Properties form should now look like Figure 3-8. Click OK to close the form.

O Object Properties

: - El
Mame: |abject_asteraid Ewents: Actions; o= = = =
u u Ll

Siprite v Create Wrap in both directions when
] Isprite_asteroid = Outside Room @
[
e
[#] wisible [5alid sl

[] Persistent

Parent: i<no parent: Ii E
Mask: I<same as sprites a Path
. 5

) Show |nformation
v C

- Steps

Delete Change

| AR | Bipa | 24008 | 040D | Zuew | puew

Figure 3-8. We've set the depth for the asteroid object.

Now would seem like a good time to check that everything has gone according to plan so
far. However, before we can do that we must create a room with some instances of moons and
asteroids in it.

Creating a room with moon and asteroid instances:

1. Select Create Background from the Resources menu.

2. Call the background background main, and click the Load Background button. Select
the Background.bmp image from the Resources/Chapter03 folder on the CD.

3. Click OK to close the Background Properties form.

4. Select Create Room from the Resources menu. If the whole room isn't visible, then
enlarge the window.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

5. Select the settings tab and call the room room first. Provide an appropriate caption
for the room (for example “Galactic Mail”).

6. Select the backgrounds tab. Click the menu icon to the right of where it says
<no background> and select the background from the pop-up menu.

7. Select the objects tab and place a number of asteroids and moons in the room.
(Remember that you can choose the object to place by clicking where it says “Object to
add with left mouse”). The Room Properties form should now look like Figure 3-9.

8. Close the Room Properties form by clicking the green checkmark in the top-left corner.

=

|9 =313 0 5 [Snap|16 [[Snepi|16 || B | J0-

| backgrounds iews
obiects | settings | tiles

Obiject to add with left mouse:

object_moon sL

Left mouse button = add
+2dlrs = no smap
+ =Shifts = muinpls
+=C0l= = move
FRight mouse butten = delste
+=Shift= = delete all
+2lhl= = popup meny
Delete underling ST S
X1 288 yi

Figure 3-9. Here's our first room.
That should give us something to look at, so let’s give it a try.

Saving and running the game:

1. Choose Save from the File menu (or click the disk icon). Save the game somewhere
where you can easily find it again (the desktop, for example).

2. Select Run normally from the Run menu. If all goes well, the game should then appear
in a new window.

Before continuing, double-check that everything is working the way it’s supposed to. Are
the moons and asteroids moving in different random directions? Do they reappear on the

49

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

other side of the screen when they leave the room? Do the asteroids always pass behind the
moons? If any of these are not working, check that you have followed the instructions correctly.
Alternatively, you can load the current version from the file Games/Chapter03/galacticl.gm6 on
the CD.

Flying Around

This isn’t a very interactive experience yet, so let’s introduce some gameplay by bringing the
rocket into the game. We've already mentioned that we’ll make two rocket objects, but let’s
stop to consider why this is necessary. Our rocket has two different ways of behaving: sitting
on top of a moving moon with full control over the ship’s direction, and flying through space
with only limited control. Having two ways of controlling one object would involve a compli-
cated set of events and actions, but if we separate these behaviors into two different objects,
then it becomes quite simple. Provided that both objects look the same, the player will never
notice that their ship is actually changing from being a “flying rocket” object to a “landed
rocket” object at different stages of the game.

We also need two moon objects, as we want the landed rocket object to follow the path of
one particular moon around (the one it has landed on). Making it into a separate object will
allow us to single it out from the others in this way. As this second moon object will be almost
the same as the normal moon, we can take a shortcut and make a copy of the existing moon
object.

Creating the special moon object:

1. Right-click the moon object in the resource list, and select Duplicate from the pop-up
menu. A copy of the moon object will be added to the resource list and its properties
form is displayed.

2. Change the name to object specialmoon. It is important that you use this exact name
(including the underscore) as we will use this to identify this object later on.

3. Set the Depth of this object to -5. This will guarantee that instances of this moon are
always in front of the other moons as it is lower than 0.

4. We will also make this moon responsible for starting the background music at the
beginning of the game. Add an Other, Game start event and include a Play Sound
action in it (mainl1 tab). Select the background music sound and set Loop to true so
that the music plays continuously.

5. Click OK to close the properties form.

Now open the first room and add a single instance of this new special moon to the level.
Run the game and the music should play. (You won't notice any other difference because the
special moon should look and behave exactly like the other moons.)

Now we can make our two rocket objects. We'll begin with the landed rocket, which needs
to sit on the special moon object until the player decides to blast off. We'll use a Jump Position
action to make it follow the special moon’s position as it moves around the screen.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

Creating the landed rocket object:

1. Create a new object called object landed and give it the landed rocket sprite. Set the
Depth to -10 so that it appears in front of the moons and looks like it’s sitting on the
surface of the special moon.

2. Add a Step, End Step event to the new object. An End Step allows actions to be per-
formed immediately before instances are drawn at their new position on the screen.
Therefore, we can use this event to find out where the special moon has been moved to
and place the rocket at the same location—just before both of them are drawn.

Note A Step is a short period of time in which everything on the screen moves a very small distance.
Game Maker normally takes 30 steps every second, but you can change this by altering the Speed in the
settings tab for each room.

e 3. Include the Jump Position action in the Actions list for this event. This action allows

— us to move an object to the coordinates of any position on the screen. Type object
specialmoon.x into the X value and object specialmoon.y into the Y value. These indi-
cate the x and y positions of the special moon. Make sure that you type the names
carefully, including underscores and dots (i.e., periods or full stops) in the correct
positions. The action should now look like Figure 3-10.

Jump to Position
Applies ta
ﬁ) Self
() Other
() Object:

e | object_specialmoon. » |

W | object_specialmoon.y |

[Relative

Zox

Figure 3-10. We set the rocket to jump to the x and y positions of the special moon, so that
it will follow this moon around.

4. You might want to test the game now. Place one instance of the rocket at a random
position in the room and run the game. The rocket should jump to the position of the
special moon and stay on top of it as it moves around.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

When you run the game, you will also notice that the rocket continually spins around
without any user input. This is because the rocket sprite contains an animation showing the
rocket rotating through 360 degrees. By default, Game Maker automatically cycles through a
sprite’s subimages to create an animation. However, this is not what is needed for this game—
we need Game Maker to select the appropriate subimage based on the direction the rocket is
moving in.

This requires a small amount of mathematics. There are 72 images representing a turn of
360 degrees, so each image must have been rotated by 5 degrees more than the last (because
360/72 = 5). Game Maker stores the direction of all objects in degrees, so it can work out which
rocket subimage to use by dividing the rocket object’s current direction by 5. Therefore we can
make the rocket face in the right direction by using this rule (direction/5) to set the current
subimage in a Change Sprite action.

Including a change sprite action in the landed object:

El 1. With the landed rocket Object Properties form open, include a Change Sprite action
(mainl tab) in its End Step event. Choose the landed rocket sprite from the menu and
type direction/5 into the Subimage property. direction is a special term that Game
Maker recognizes as meaning the direction that this instance is currently facing in.
Finally, set Speed to 0 to stop the sprite from animating on its own and changing the
subimage. Figure 3-11 shows how this action should now look.

Applies to
lgl) Self

) Other

) Object:

sprite; ! sprite_landed

m

|
subimage: | direction/5 |
|

speed: | 0

o

Figure 3-11. Set the correct subimage in the sprite.

Note This way of dealing with rotated images might seem rather clumsy, but many old arcade games
were made in a similar way so that each rotated image could include realistic lighting effects. Nonetheless,
the registered version of Game Maker contains an additional action to rotate a sprite automatically without
the need for subimages at all.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

We can also make use of this special term for the object’s direction to add actions that
allow the player to control the direction of the rocket using the arrow keys.

Including keyboard events for the landed rocket object:

1. Add a Keyboard, <Left> event to the landed rocket object.

2. Include the Move Free action and type direction+10 in the Direction property. This
| indicates that the current direction should be increased by 10 degrees. Set Speed to 0
because we don’t want the rocket to move independently of the special moon. This
action should now look like Figure 3-12.

Applies ta
&) Self

) Other

) Object:

direction: | direction+10 |

speed: | i} |

[Relative

o

Figure 3-12. Set the direction to equal itself plus 10.

g}; 3. Add a similar Keyboard event for the <Right> key. Include a Move Free action and type
| direction-10 in the Direction property.

The last control we need for the landed rocket will allow the player to launch the rocket
using the spacebar. This control will need to turn the landed rocket object into a flying rocket
object, but we can’t make an action for this as we haven't created the flying rocket object yet!
So we’ll make the flying rocket now and come back to this later.

Creating the flying rocket object:

1. Create a new object called object flyingand select the flying rocket sprite. Set Depth
to -10 to make sure that this object appears in front of moons.

2. Add an Other, Outside Room event and include a Wrap Screen action to wrap around
the screen in both directions.

El 3. Add an End Step event. Include a Change Sprite action, choose the flying rocket sprite,
type direction/5 in the Subimage property, and set the Speed to 0.

53

54 CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

g?; 4. Add a Keyboard, <Left> event and include a Move Free action. We don’t want
sl the player to have too much control over the flying rocket, so type direction+2 in
Direction and set Speed to 6.

5. Add a Keyboard, <Right> event with a Move Free action. Type direction-2 in Direc-
b tion and set Speed to 6.

The basic gameplay is nearly there now—just a few more events to tie up. First, the game
should end when the rocket hits an asteroid. Next, when the flying rocket reaches a moon, it
should turn into a landed rocket, and the moon should turn into the special moon (so that the
landed rocket can follow it). We achieve this using the Change Instance action, which basi-
cally turns an instance from one type of object into another. To return to our jelly comparison,
this is a bit like melting down the jelly from one instance and putting it into a new object
mold. Although the instance may end up as a completely different kind of object, it keeps
many of its original properties, such as its position on the screen and its direction. The fact
that these values remain the same is critical—otherwise the launch direction of the landed
rocket would get reset as soon as it turned into a flying rocket!

Adding collision events to the flying rocket object:

@ 1. Add a Collision event with the asteroid object and include the Restart Game action
(main2 tab) in the Actions list. Later on we’ll include an explosion to make this more
interesting.

2. Add a Collision event with the moon object and include the Change Instance action
(mainl tab). Set the object to change into object landed using the menu button, and
leave the other options as they are.

3. Include a second Change Instance action for changing the moon into a special moon
object. To make this action change the moon object (rather than the rocket), we need
to switch the Applies to option from Self to Other. This makes the action apply to the
other object involved in the collision, which in this case is the moon. Set the object to
change into object specialmoon. Figure 3-13 shows the settings.

Applies to
@
O 3elf
(&) Other
() Object:
chanhge into: Eobiect_specialmoon | é{‘
perform events; inot | é&

Figure 3-13. Change the other instance involved
o OK in the collision into a special moon.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

Finally, we can go back to the landed rocket object. This will need an event that changes it
into a flying rocket and deletes the special moon when the spacebar is pressed.

Adding a key press event to the landed rocket object:

1. Reopen the Object Properties form for the landed rocket by double-clicking on it in the
resource list.

2. Add a Key Press, <Space> event and include a Move Free action to set the rocket in
P motion. Type direction in the Direction property (this keeps the direction the same)
and set Speed to 6.

3. Now include a Change Instance action and change the object into an object flying.

4. Finally, we want to delete the special moon because it no longer needs to be visited.
Include a Destroy action and change the Applies to option to Object. Click the menu
button next to this and select the object specialmoon, as shown in Figure 3-14.

Applies to

O Self
) Other . ;.
(&) Object: |obiect_specialmoon | =

Figure 3-14. Include a Destroy action for the

« 0k special moon.

Caution Using the Object setting for Applies to performs an action on all instances of that kind of object
in the room. Deleting all of the special moon instances is fine in this case (as there is only one), but you will
need to think carefully about the effects this setting will have before using it in your own games.

That completes the second version of our game. Make sure you save it and check that it all
works as it should so far. You should now be able to rotate the rocket on a moon, launch it with
the spacebar, and steer through the asteroids to land on another moon. Moons should disap-
pear as you visit them, and the game should restart if you hit an asteroid. If something is not
working, then check the instructions again, or compare your version with the version on the
CD (Games/Chaptero3/galactic2.gm6).

55

56

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

There are clearly a number of things still missing from the game, but the game is already
quite fun to play. In the next section, we will add a scoring mechanism and a high-score table,
as well as advancing the player to a new level once mail has been delivered to all the moons.

Winning and Losing

In this section we'll put a bit more effort into what happens when the player wins or loses the
game. Let’s begin by making asteroids a bit more explosive!

An Explosion

To get this working, we’ll add a new explosion object and create an instance of it when the
rocket hits an asteroid. This will play the explosion sound when it is created and end the game
with a high-score table after the explosion animation has finished.

Adding an explosion object to the game:

1. Create a new object called object explosion, and select the explosion sprite. Give it a
Depth of -10 to make it appear in front of other instances.

2. Add a Create event and include a Play Sound action (mainl1 tab) for the explosion
sound.

3. Add an Other, Animation End event. This event happens when a sprite reaches the
final subimage in its animation.

E 4. Include the Show Highscore action (score tab) in the Actions list for this event. To
make the high-score list look more interesting, set Background to the same as the
background for the game, set Other Color to yellow, and choose a different font
(e.g., Arial, bold). The action should now look like Figure 3-15.

background: |backgr0und_main | 5{‘
border: |Sh0w | =,
ather color: | | =
fort: | AaBbCcDd &

o

Figure 3-15. You can spice up the high-score table.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES 57

@ 5. Also include a Restart Game action to start the game again after the high-score table is
closed (main2 tab).

6. Click OK to close the object.

Next we have to change the behavior of the flying rocket when it hits an asteroid.

Editing the flying rocket object:

1. Reopen the properties form for the flying rocket object by double-clicking on it in the
resource list.

2. Select the Collision event with the asteroid by clicking on it once. Click once on the
Restart Game action and press the Delete key to remove it from the action list.

3. Include a Create Instance action (mainl tab) in its place, and set it to create the explo-
sion object. Make sure the Relative property is enabled so that the explosion is created
at the current position of the rocket.

4. Include a Destroy Instance action (mainl tab) and leave it set to Self so that the rocket
gets deleted. Click OK on the properties form to finish.

You might want to run the game now to see how it looks. Try colliding with an asteroid
and you should get an explosion followed by the high-score table. Unfortunately, you can’t
score any points yet, so let’s add this next.

Scores

If you've played the game quite a bit already, then you may have noticed a way of “cheating.”
You can avoid the risk of hitting asteroids by waiting for another moon to fly right next to your
own and then quickly hop between moons. The game can become a lot less fun once this
technique has been discovered, so our scoring system is designed to discourage the player
from playing this way. Although they receive points for delivering mail, they also lose points
for waiting on moons. This means that a player that takes risks by launching their rocket as
soon as possible not only will have the most enjoyable playing experience but will also score
the most points.

Editing game objects to include scoring:

1. Reopen the properties form for the special moon object and select the Game Start
= event. Include a Set Score action with a New Score of 1000. This gives the player some
points to play with at the start. Close the properties form.

2. Reopen the properties form for the landed rocket and select the End Step event.
= Include a Set Score action with New Score as -1 and the Relative option enabled. This
will repeatedly take 1 point off the score for as long as the player remains on a moon.
As there are 30 steps every second, they will lose 30 points for every second of hanging
around. Close the properties form.

58 CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

3. Reopen the properties form for the flying rocket and select the Collision event with
= the moon object. Include a Set Score action with a New Score of 500 and the Relative
option enabled.

4. Include a Play Sound action after setting the score and select the bonus sound.

Levels

At the moment, there is no reward for delivering all the mail. In fact, once all the moons are
removed, the rocket just flies through space until it collides with an asteroid! This seems rather
unfair, and it would be much better if the player advanced to a more difficult level. Making
multiple levels in Game Maker is as simple as making new rooms. We can use actions to move
between these rooms, and include more asteroids in the later levels to make them more diffi-
cult to play.

Let’s begin by creating the new levels. You'll repeat these steps to make two more levels so
that there are three in total. You can always add more of your own later on.

Note The order of the rooms in the resource list determines the order of your levels in the game, with the
top level being first and the bottom level last. If you need to change the order, just drag and drop them into
new positions into the list.

Creating more level resources for the game:

1. Right-click on a room in the resource list and choose Duplicate from the pop-up
menu. This will create a copy of the level.

2. Go to the settings tab and give the room an appropriate name (room first,
room_second, etc.).

3. Switch to the objects tab, and add or remove instances using the left and right mouse
buttons.

4. Make sure that each level contains exactly one special moon and one instance of the
landed rocket.

In order to tell Game Maker when to move on to the next room, we have to be able to
work out when there are no moons left in the current one. To do this, we will use a conditional
action that asks the question “Is the total number of remaining moons equal to zero?” If the
answer is yes (or in computer terms, true), then a block of actions will be performed; other-
wise the answer is no (or false), and this block of actions is skipped. We'll put this check in the
collision event between the flying rocket and the moon, so that players complete the level as
soon as they hit the final moon.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

Note All conditional actions ask questions like this, and their icons are octagon-shaped with a blue back-
ground so that you can easily recognize them.

Editing the flying rocket object to test for the number of remaining moons:

FZz

o%
L

1. Reopen the properties form for the flying rocket and select the Collision event with the

moon object.

2. At the end of the current list of actions, include the Test Instance Count action
(control tab). Set the Object field to object moon and the other settings will default to
how we need them (Number, 0 and Operation, Equal to). This is now equivalent to the
question “Is the total number of remaining moons equal to zero?” The form should
look like Figure 3-16.

ohject: |0biect_m00n | S|
humber: !D |
operation: |Equal (] | a
[CIwoT

o

Figure 3-16. We use the Test Instance Count action to count the number of moons.

. Below this action we need to start a block. A block indicates that a number of actions

are grouped together as part of a conditional action. This means that all of the actions
in the block will be performed if the condition is true and none of them if it is not. Add
the Start Block action (control tab) directly below the condition to test the instances.

. First, we will pause for a moment to give the player a chance to notice they have

reached the final moon. Include the Sleep action (main2 tab) and set Milliseconds to
1000. There are 1,000 milliseconds in a second, so this will sleep for 1 second.

. We'll award the player an extra bonus score of 1,000 points when they finish a level.

Include a Set Score action (score tab) with a New Score of 1000 and make sure that the
Relative option is enabled.

. Include the Next Room action from the main1 tab to move to the next room. No prop-

erties need to be set here.

59

60 CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

T 7. Finally, add the End Block action (control tab) to end the block of the conditional
action. The completed set of actions should now look like Figure 3-17. Note that the
actions in the block are indented so that you can easily see that they belong together.

Change instance into object_landed

Change instance into object_specialmoon
Set the score relative to 500

Flay zound zound_bonus
If the number of instances is a value

ey Stanrt of & block
Sleep 1000 miliseconds
Set the score relative to 1000

Goto nest room

&7 Endaf ablack

Figure 3-17. Note that the actions in the block are indented.

It is time to try out the game again. Save and play the game to check that you can go from
one level to the next by visiting all the moons. You can also load this version of the game from
the file Games/Chaptero3/galactic3.gmé6 on the CD. However, if you complete the game you'll
get an error message indicating that it has run out of levels. Don’t worry—this is something we
will fix in a moment, when we add some more finishing touches to the game.

Finishing Touches

To finish our game, we’ll add an opening title screen, a help screen, and a congratulatory mes-
sage upon completing the game. We'll also include a few visual touches to add a little bit of
variety in the moons and asteroids.

A Title Screen

To create the title screen, we need a new object to display the name of the game and perform
some initial tasks. We'll make it start the music and set the initial score, and then wait for the
player to press a key before taking them to the first level.

Creating a new title object resource for the game:

1. Create a new sprite called sprite title using Title.gif.

2. Create a new object called object title and give it this sprite. Set the Depth property
to 1 so that the moons go in front of it and the asteroids behind.

3. Add a Create event. This will contain the actions to start the music and set the score,
but we've already created these in the special moon object, so we can simply move
them over.

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

. Open the special moon Object Properties form from the resource list and select the

Game Start event to view its actions.

. Drag and drop the two actions from the special moon Game Start event into the

Create event of the title object. The Game Start event in the special moon should now
be empty, and so it will delete itself automatically when the Object Properties form is
closed. Do this now by clicking OK on the special moon’s properties form.

. Add a Key Press, <Any key> event to the title object and include the Next Room action

in the action list for this event (mainl tab).

Next we need to create a new room for the title screen.

Creating a new title room resource for the game:

1.

Create a new room called room title and give it an appropriate caption. Also set the
room’s background in the same way as before.

. Add a few moon and asteroid instances to the room (just for effect).
. Place an instance of the new title screen object in the center of the room.
. Close the room properties.

. To make sure that this is the first room in the game, drag the new room to the top of

the list of rooms in the resource list.

Now quickly test the game to check that this all works correctly.

Winning the Game

We also need to stop the game from producing an error at the end and congratulate the player
instead. Similar to how we created the title room, we will create a finish room with a finish
object to display the message and restart the game.

Creating a new finish object resource for the game:

it €]
L

B0

1.

2.

5.

Create a new object called object finish.It doesn’t need a sprite.

Add a Create event to the object and include the Display Message action in it (main2
tab). Set the Message to something like: “Congratulations! You've delivered all the
mail.”

. Include a Set Score action, with a New Score of 2000 and the Relative option enabled.

. Include the Show Highscore action, with Background, Other Color, and Font proper-

ties set as before.

Finally, include the Restart Game action.

Now that we have the object, we can create a room for it to go in.

61

62

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

Creating a new finish room resource for the game:

1. Create a new room and place one instance of the new finish object inside it. As this
object has no sprite, it will appear as a blue ball with a red question mark on it. This
will not appear in the game, but it reminds us that this (invisible) object is there when
we are editing the room.

Now test the game to check that you can complete it—and that you get the appropriate
message when you do (in other words, not an error message!)

Adding Some Visual Variety

At the moment all the moons look exactly the same, and the asteroids even rotate in unison
as they move around the screen. However, with a different moon sprite and a little use of the
random command, we can soon change this.

Editing the moon and asteroid objects:

1. Open the properties form for the moon object and click the Edit button below the
name of the object’s sprite (this is just another way of opening the moon sprite’s
properties).

2. In the moon sprite’s properties, click Load Sprite and select Bases.gif instead of the
existing sprite. This sprite contains eight subimages showing different kinds of inhabi-
tations on each moon. Click OK to close the Sprite Properties form.

IEI 3. Back in the moon Object Properties form, select the Create event and include a new

Change Sprite action. Select the moon sprite and type random(8) in the Subimage
property. This will randomly choose one of the inhabited moon sprites. Also set Speed
to 0 to stop the sprite from animating on its own and changing the subimage.

4. Close the Action Properties and the moon Object Properties forms.

|§| 5. Include an identical Change Sprite action to the Create event of the special moon

object in the same way. There is no need to edit the moon sprite again, as both objects
use the same one.

El 6. Open the properties form for the asteroid object and include a new Change Sprite

action in its Create event as well. This time choose the asteroid sprite, and type
random(180) in the Subimage property. There are 180 images in the rotating asteroid
animation, so this will start each one at a different angle. Also type random(4) in the
Speed property so that asteroids rotate at different speeds.

Help Information

Once you have finished making a game, it is easy to sit back and bask in your own creative
genius, but there is one more important thing you must do before moving onto your next
game. It may seem blindingly obvious to you how to play your masterpiece, but remember
that it is rarely that obvious to a newcomer. If players get frustrated and stuck in the first few
minutes because they can't figure out the controls, then they usually assume it is just a bad

CHAPTER 3 © MORE ACTIONS: A GALAXY OF POSSIBILITIES

game rather than giving it the chance it deserves. Therefore, you should always provide some
help in your game to explain the controls and basic idea of the game. Fortunately, Game
Maker makes this very easy through its Game Information.

Adding game information to the game:
1. Double-click on Game Information near the bottom of the resource list.

2. Atext editor will open where you can type any text you like in different fonts and
colors.

3. Typically you should enter the name of the game, the name of the author(s), a short
description of the goals, and a list of the controls.

4. When you're done, click the green checkmark at the top left to close the editor.

That'’s all there is to it. When the player presses the F1 key during game play, the game is
automatically paused until the help window is closed. Test the game one last time to check
that this final version works correctly. You can also load the final version of the game from
Games/Chaptero3/galactic4.gmé on the CD.

Congratulations

Congratulations! You've now completed your second game with Game Maker. You might want
to experiment with the game a bit further before continuing as there is much more you could
do with it. To start with, you could make more levels with faster-moving asteroids or smaller
moons to make it harder to land on them. We've included both larger planet sprites and
smaller planetoids for you to experiment with, so see what you can come up with.

This chapter has introduced you to more features of Game Maker. In particular you've
made use of events and actions to change sprites and objects. You've also used the Depth
property of objects to control the order in which the instances appear on the screen. This
chapter has also introduced variables for the first time, even though we haven't called them
that yet. For example, the word direction is a variable indicating the current direction of an
instance. We also used the variables x and y that indicate the position of an instance. There are
many variables in Game Maker, and they are extremely useful. We will see plenty more of them
in the chapters to follow.

In the next chapter, we'll continue to build on what you've learned so far by creating a
crazy action game that requires quick thinking to avoid being squished. It’s amazing what can
go on in a deserted warehouse.. . .

63

CHAPTER 4
EEN

Target the Player: It’s Fun
Being Squished

Our third game will be an action game that challenges players to make quick decisions
under pressure—and if they’re not fast enough then they’ll get squished! We'll introduce some
new techniques for putting character animation into the game, and show how a controller
object can be used to help to manage the game.

Designing the Game: Lazarus

As usual we'll need a description of our game. We've named it Lazarus, after the biblical char-
acter who was resurrected from the dead, because the game once had to be recovered from an
old floppy disk that had become corrupted! Always remember to make backups of your data!

Lazarus has been abducted by the Blob Mob, who are intent on bringing this harmless crea-
ture to a sticky end. They've imprisoned him at the Blobfather’s (sorry) factory, where they are
trying to squish him under a pile of heavy boxes. However, they've not accounted for Lazarus’s
quick thinking, as the boxes can be used to build a stairway up to the power button that halts
the machinery. Do you have the reactions needed to help Lazarus build a way up, or will the evil
mob claim one more innocent victim?

Each level traps Lazarus in a pit of boxes stacked up on either side of the screen to contain
him within the level. The arrow keys will move Lazarus left and right, and he will automatically
Jjump onto boxes that are in his way. However, he can only jump the height of a single box, and
stacks two or more boxes high will block his path. New boxes will periodically appear directly
above Lazarus’s current position and fall vertically down from the top of the screen until they
come to rest. This means that the player will be able to use Lazarus’s position to control where
boxes fall and build a stairway up to the power button.

There will be four different types of boxes, increasing in weight and strength: cardboard,
wood, metal, and stone. Falling boxes will come to rest on boxes that are stronger than them, but
will crush boxes that are lighter. The type of each box is chosen at random, but the next box will
be shown in the bottom-left corner of the window just before it appears. There will be a number
of increasingly difficult levels, with higher stairways to build, and boxes that fall faster. When
Lazarus gets squished, the level will restart to give the player another try. See Figure 4-1 for an
example of how a level will look.

65

66

CHAPTER 4 © TARGET THE PLAYER: IT'S FUN BEING SQUISHED

't Lazarus out of the Pit

Figure 4-1. This shows how a typical level might look in the Lazarus game.

This may sound rather simple, but—as you'll see—it actually makes for a very challenging
game! All the resources can be found in the Resources/Chaptero4 folder on the CD.

An Animated Character

Our first task will be to create the Lazarus character. We'll give him comical animations for
when he’s moving, jumping, and being squished to add to the appeal of the game. This will
require a number of different sprites and several different Lazarus objects as well. Like the dif-
ferent behaviors of the rocket in Galactic Mail, using several objects helps us to separate the
different animations of Lazarus in a simple way.

The animations for Lazarus have been designed around the size of the boxes in the game.
All the boxes are exactly 40X40 pixels in size, so the animations that show Lazarus jumping
from one box to the next need to be as tall and wide as two boxes (80X80 pixels). This means
we’'ll be working with sprites of different sizes, and have to think carefully about where to
place the origin of each sprite so that they match up correctly. Remember that Game Maker
acts as if it is holding each sprite by its origin as it moves around the screen; so all the origins
need to be at the same position relative to Lazarus—regardless of the size of the sprite. This
should begin to make sense as you complete the steps that follow.

Tip Setting the Smooth Edges property in the Sprite Properties form can often make sprites appear less
pixilated (blocky) in the game.

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED 67

Creating the Lazarus sprite resources for the game:

1. Create a new sprite called spr laz stand using Lazarus stand.gif from the Resources/
Chaptero4 folder on the CD. This sprite is 40X40 pixels and shows Lazarus in his “normal”
position. Remember that the origin for sprites defaults to the top-left corner Xand Y
both set to 0). We'll leave this where it is and make sure that the origins of all the other
sprites match up with this position. Click the OK button to close the form.

2. Create another sprite called spr laz right using Lazarus right.gif. This sprite is
80X%80 pixels and shows Lazarus jumping 40 pixels to the right (use the blue arrows to
preview the animation). As usual, the origin has defaulted to the top-left corner of the
sprite, but the top-left corner is further above Lazarus’s head than in the last sprite. To
match up with the previous sprite, we need to move the origin down by 40 pixels—so
set the Y value to 40. The properties form should now look like Figure 4-2.

B Sprite Properties

Mame: Ispr_laz_right Precize collision checking

Tranzparent

& OK

Smooth edges
B Load Sprite
Preload texture
wiidth; 80 Height: 80 Origin
Mumber of subimages; 7 % |-D_| v |‘E_|
Show: ; ' _ ;
2 (=)

Bounding Box
(&) Automatic) Full image
O Marual _

Figure 4-2. The origin for this sprite has been moved to halfway down the left-hand side.

3. Createaspr laz jump right sprite in exactly the same way using
Lazarus_jump_right.gif (with an X value of 0 and a Y value of 40).

4. Create aspr laz left sprite using Lazarus left.gif. This sprite is also 80X80 pixels
and shows Lazarus jumping 40 pixels to the left, but this time Lazarus starts on the
bottom-right side of the sprite. This means we need to move the origin 40 pixels down
and 40 pixels right to place it at the same relative position as before. Set both the X and
Y values to 40 and close the form.

5. Createaspr laz jump left sprite in exactly the same way using
Lazarus_jump left.gif (with an X value of 40 and a Y value of 40).

6. Create two more sprites called spr laz afraidand spr laz squished using

Lazarus_afraid.gif and Lazarus squished.gif. These are 40X40 pixels so there’s
no need to change the origin.

These are all the sprites we need for Lazarus, so our next step is to make some objects for
him. The main object will be the “normal” standing Lazarus. This is the most important one,
as it will react to the player’s keyboard input. The others are only there to play the different

68

Ir
|
o

2 [ef]

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

animations, after which they turn themselves back into the standing Lazarus. They will also
move Lazarus to a new position that corresponds to the final frame of the animation.

We have a bit of a chicken-and-egg situation here, as we did with the two types of rockets
in Galactic Mail. The “normal object” will need actions to turn it into “animating objects”
(which don’t exist yet) and the “animating objects” will need actions to turn them into “normal
objects” (which also don't exist yet). So which objects do we create first? Well, the answer is
that we create the “normal object” but come back to creating its events and actions after we
have created the “animating objects”—crafty, eh?

Creating Lazarus object resources for the game:
1. Create a new object called obj laz stand and give it the standing Lazarus sprite.
2. Press OK to close the properties form (we will come back to it later).

3. Create a new object called obj laz right and give it the sprite that hops one box hori-
zontally to the right (spr laz right).

4. Add an Other, Animation End event. Remember that this event happens when a sprite
reaches the last subimage in its animation.

. Include the Jump to Position action in this event (move tab). Set X to 40 and Y to 0,
and make sure that the Relative option is enabled. As the boxes are all 40X40 pixels,
this will move Lazarus exactly one box to the right at the end of the animation.

&

Ed

. Also include the Change Instance action (mainl tab) below this and select
obj laz stand as the object to change back into.

7. Click OK to close the object properties form.

. Create another object called obj laz left and give it the sprite that hops one box hori-
zontally to the left (spr laz left). Repeat the same process as before (steps 4-7), but
set X to -40 for the Jump to Position action.

»

b
i

9. Create another object called obj laz jump right and give it the sprite that hops up
one box diagonally to the right (spr_laz jump right). Repeat the process, setting X to
40 and Y to -40.

)
g

. Add a final object called obj laz jump left and give it the sprite that hops up one box
diagonally to the left (spr laz jump left). This time, set X to -40 and Y to -40.

S [e8]
—
o

We may as well get the squished Lazarus object out of the way now too—even though
we won't need it for a while. Once its gruesome animation finishes, this object will display a
message to tell the player that they've been squished. This isn't because we think they are too
stupid to notice, but it provides a useful pause before starting the level again! We're not going
to add lives or high scores in this game, so we'll simply restart the level to give the player
another try.

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Creating the squished Lazarus object resource:
1. Create an object called obj laz squished and give it the squished Lazarus sprite.

Q) 2. Add an Other, Animation End event and include the Display Message action (main2
tab) in it.

3. Type something like “YOU’RE HISTORY!#Better luck next time” into the message
properties. Note that putting the # symbol in the middle of the message will start a
new line from that point.

E 4. Finally, include the Restart Room action (mainl tab) after the message action and
press OK to close the object properties form.

Okay, so now we have these animation objects in place, we can continue making the main
standing Lazarus object we started on the previous page. One of its main jobs is to change into
the appropriate animating object when the player presses a key. The appropriate object
depends on whether Lazarus is standing next to any boxes. We'll use a conditional collision
action to help Game Maker work this out for us.

Adding a right key event for the standing Lazarus object:

1. Reopen the properties form for the obj laz stand object by double-clicking it in the
resource list.

2. We'll start by creating actions to handle moving to the right. Add a Key Press, <Right>
event and include the Check Collision action in it (control tab).

3. This action allows us to check that there would be a collision if we moved this instance
to a particular position on the screen. We need to make sure that Lazarus is on solid
ground before allowing him to move, as he shouldn’t be able to jump when he is stand-
ing on thin air! To check that this is the case, we set X to 0 and Y to 8 (slightly below his
current position), and enable the Relative option.

Note Conditional collision actions have an Objects option, which allows us to choose between checking
for collisions with all objects or only ones marked as solid. We're leaving this set to only solid, so we need to
remember to set the Solid property later when we create the box objects.

£ 4 Allof the remaining actions in this event depend on the previous condition (they only
need to be called if it is true). Consequently, we'll need to include them all between
Start Block and End Block actions. Include the Start Block action now.

5. Now include the Check Empty conditional action. This conditional action is the
opposite of the last one: it checks that there wouldn’t be a collision if we moved to a
particular position on the screen. So to check that the space to the right of Lazarus is
free, set X to 40 (the width of a box), set Y to 0, and enable the Relative option.

70 CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

6. Include the Change Instance action (mainl tab) and select the obj laz right object.
Select yes to Perform Events. This means that the Create event of the object we're
turning into will get called (which is important later when we add sound effects).

Note The Perform Events option controls whether the Destroy event of the current object and the Create
event of the new object should be called. This isn’t usually necessary so it does not call them by default.

7. Next include the Else action from the control tab (more about this in a moment).

8. Include another Check Empty conditional action directly after this. This should verify
that there are no boxes diagonally, up, and to the right of Lazarus. Set X to 40 and Y to
-40, and enable the Relative option.

9. Next include the Change Instance action and select the obj laz jump right object.
Select yes to Perform Events.

g7 10. Finally, include an End Block action to conclude the actions that should be performed
if Lazarus is on solid ground. The list of actions now should look like Figure 4-3.

I there iz a collizion at & position
ey Stanrt of & block
If & position is collizion free
Change instance into obi_laz_right
Elze
If & position is collizion free

Change instance into obi_laz_jump_right
&7 Endaf ablack

Figure 4-3. Here are the actions for moving or jumping to the right.

This is the first time we've used the Else action, but it is often used alongside conditional
actions in this way. On its own, a conditional action only allows you to specify actions that
should be performed if a condition is true. However, in combination with Else, you can specify
different actions to be performed if that same condition is not true. This has many uses, but in
this situation it allows us to ask sequences of questions like this:

Is there solid ground beneath Lazarus’s feet? Yes. Well, is there a free space to the right of
Lazarus? No—there’s a box in the way. Okay, well, is there a free space on top of that box
then? Yes—let's jump on top of it.

This is just one possible outcome, but our actions provide outcomes for four different sit-
uations: not moving when falling through the air; moving horizontally to the right when no
boxes are in the way; jumping diagonally to the right when a single box is in the way; and
doing nothing at all when more then one box is in the way. You can think of this action list as
reading something like this:

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

If the position below has something solid in it, then read the next sentence. If the
position to the right is collision free, then change into object obj laz right; else, if the
position diagonally right is collision free, then change into object obj laz jump right.

Before continuing, go through the actions step by step in your head and try to work out
how you end up with each of these different outcomes (move right, move diagonally right, and
no movement). When you're happy that this makes sense, we’ll move on and do the same
thing for the left arrow key.

Note Like other conditional actions, the Else action can be used with or without blocks. If blocks are not
used, then the Else only affects the action that immediately follows it.

Adding a left key press event to the standing Lazarus object:

1. Add a Key Press, <Left> event and include the Check Collision action. Set X to 0 and Y
to 8, and enable the Relative option (this checks below).

2. Include a Start Block action.

o,
3. Include the Check Empty conditional action (control tab) with X set to -40, Y set to 0,
and the Relative option enabled (this checks left).

4. Next, include a Change Instance action (mainl tab) and select obj laz left. Choose
yes to Perform Events.

5. Now include Else action from the control tab.

6. Include a Check Empty action with X set to -40, Y set to -40, and Relative enabled (this
checks diagonally left).

7. Include a Change Instance action and select the obj 1az_jump_ left object. Choose yes
to Perform Events.

<7 & Finally, include an End Block action to finish the block of actions.

Although our keyboard events stop Lazarus from jumping in mid-air, there aren’t yet any
events to make him fall down to the ground when he is. We'll get Game Maker to test for this in
a Step event so that it is continually checking to see if he should be falling. However, we need
to think carefully about how far he should fall in each step. The amount of movement in each
step will determine how fast he falls, but it will make our job much simpler if we also choose a
number that divides exactly into 40 (the height of the boxes). Can you think why?

Let’s imagine that we chose a number that doesn’t divide into 40, like 12. Lazarus would
have fallen 12 pixels after one step, 24 pixels after two steps, 36 pixels after three steps, and
48 pixels after four. At no stage has Lazarus fallen the exact 40 pixels needed to fall the height
of one box; he is either 4 pixels too high (at 36 pixels) or 8 pixels too low (at 48 pixels). This
means he would either end up floating above boxes, or jammed someway into them! Using
any number that divides into 40 will avoid this problem (1, 2, 4, 5, 8, 10, 20, or 40), so we've
chosen a value of 8 because it produces a sensible-looking falling speed.

72 CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Adding a step event to the standing Lazarus object to make it fall:

1.

2.
3.

Add the Step, Step event to the standing Lazarus object. We are using the “standard”
Step event as we don't really care exactly when Lazarus falls, provided he does.

Include a Check Empty action in the Step event, setting X to 0 and Y to 8, and enabling
the Relative option. This action checks for empty space just below Lazarus.

Include a Jump to Position action directly after it so that it will only be performed if
the Check Empty condition is true. We need to give it the same relative settings as
before, so that it moves into the empty space. Set X to 0 and Y to 8, and enable the
Relative option.

A Test Environment

We've gone through quite a lot of steps so far without being able to test our work, so before
going any further let’s quickly create a test level for Lazarus to move around in. There are no
falling boxes yet, so we'll have to create some random stacks of our own to check if the move-
ment is working correctly. We'll create just one box type to do this: the boxes that make up the
walls of the pit.

Creating the wall object resource for the game:

1.

Create a new sprite called spr wall usingWall.gif. Disable the Transparent option as
the walls for this level need to look completely solid.

Create a new object called obj wall and give it the wall sprite. Enable the Solid option
so that the checks in the standing Lazarus object can detect the wall.

Create a new room called room test and provide a caption in the settings tab.

Look in the toolbar at the top of the Room Properties form and set both Snap X and
SnapY to 40. All our boxes are 40X40 pixels, so this will help us to place them neatly on
the level. The grid in the room will change accordingly.

Switch to the objects tab again and select the wall object to place. Create a level with a
number of boxes that form flat areas and staircases (remember, you can hold the Shift
key to add multiple instances). Also add one instance of the standing Lazarus object.
Try to make it look something like Figure 4-4.

Note Sometimes when you close a room form you get a warning message saying that there are
instances outside the room. This can happen when you accidentally move the mouse outside the room
area while adding objects. You will be asked whether these instances should be removed—simply click
the Yes button.

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED 73

[= Room Properties |:“E”E|
W |) d wn 128 f) Snapz:qb_| Snapiii-‘iﬁ_I |E|’<>‘ S

! backgrounds views
obiects | settings | tiles

Object to add with left mouse:

lnhi_laz_squwshed éL

Left mouse button = add

+2dlts = no snap

+ <SR = multple I
+2Chi= = move

FRight mouse button = delete
ity = delste ol
+20hT= = popup menu

Delete underlying ealaalalalallCalalalel~alslela

Figure 4-4. Your test level should look something like this.

At last, you can finally run the game! Test the character’s movement in all the possible sit-
uations and make sure that he behaves the way you would expect. If something isn't working
right, then check your steps carefully, making sure that you enabled the Relative option in all
the actions where it was indicated. Alternatively, you can load the current version from the file
Games/Chaptero4/lazarusi.gmé on the CD.

Falling Boxes

Our next goal is to create the falling boxes that both threaten the player and provide the
means for their escape. As indicated in the game description, there will be four types of boxes
in the game: stone boxes, metal boxes, wooden boxes, and cardboard boxes. As you would
expect, stone boxes are the heaviest and cardboard boxes are the lightest. Falling boxes are
chosen at random and heavier boxes will crush lighter boxes as they fall—making it harder to
build a stairway out of the pit. However, to give the player a chance to think ahead, the next
box will be shown in the corner of the screen while the last box is still falling.

Each box will need to change its behavior three times in the game: first it appears in the
corner, as the “next box”; then it falls down the screen until it lands on another box; and finally
it forms a stationary obstacle for Lazarus to negotiate. As you may have guessed, we will
achieve this by creating three different objects for each box: one for each behavior. We will
start by creating the stationary boxes, as they are the simplest to make. First, though, we need
to create some new sprites.

74 CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Creating new box sprite and object resources for the game:

1. Create sprites called spr box stone and spr box card using StoneBox.gif and
CardBox.gif. Disable the Transparent option on both these sprites.

2. Now create sprites called spr box metal and spr box wood using MetalBox.gif and
WoodBox.gif. This time leave the Transparent option enabled, as these two sprites
have a small amount of transparency around the edges.

3. Create a new object called obj box stone and give it the sprite for the stone box.
Set the Solid option so that it is detected in collision tests.

4. Repeat the previous step to add objects for obj box metal, obj box wood and
obj box_card.

Next we’ll make the falling boxes. These need to start at the top of the screen, directly
above Lazarus’s horizontal position, so we’ll make use of the x variable of the standing Lazarus
object to tell us where that is. Once it starts falling, we'll give it a speed of 5 because that divides
exactly into 40 (important for the same reasons as before) and it is slightly slower than the
speed that Lazarus falls (otherwise a box might squish Lazarus in the air!). When a box collides
with a heavier box, it turns into a stationary box, but when it collides with a lighter box, it
destroys that box and continues to fall.

Creating falling box objects for the game:

1. Create a new object called obj falling stone, give it the sprite for the stone box, and
select the Solid option as before.

. Add a Create event and include a Jump to Position action in it. Type the variable
obj laz stand.x (the horizontal position of Lazarus) into X and set Y to -40. This will
make the box start above Lazarus, just out of view at the top of the screen.

3
<&
N

. Next include the Move Fixed action, using a downward direction and a Speed of 5.

4. Add a Collision event with obj laz stand and include a Change Instance action in it.
Change the Applies to option to Other, so that it changes Lazarus rather than the box.
Select the obj laz squished and select yes to Perform Events.

w

5. Add another Collision event, this time with obj wall. This needs to stop the box
moving, so include a Move Fixed action and select the middle square with a Speed of 0.
Also include a Change Instance action, and select the stationary box obj box_stone.

. Add a third Collision event with obj box stone and include the same two actions as
the Collision event with the wall above (you could copy them).

7. Add a fourth Collision event with obj box metal. The metal box is lighter than the
stone box so it must be crushed. Include a Destroy Instance action and select the
Other object.

[=7]

. Add fifth and sixth Collision events with obj box wood and obj box card, both includ-
ing identical Destroy Instance actions as we did in step 7 to destroy the Other box in
the collision.

e
(=]

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Okay, that’s one of the falling boxes. The other falling boxes are similar but need to
behave slightly differently when they collide with different kinds of boxes.

9. Create the remaining three falling objects for the other types (obj falling metal,
obj falling wood, and obj falling card). Repeat steps 1-8 for each one, using step 7
when a box crushes another box and step 5 when a box stops moving. Refer to Table 4-1
when deciding which boxes should crush each other.

Table 4-1. Box Materials That Should Crush Each Other

Material Material(s) That It Crushes
Stone Metal, Wood, and Card
Metal Wood and Card

Wood Card

Card None

Phew! That was quite a lot of work (28 events and 46 actions), made worse by the fact that
we had to repeat the same steps over and over again. In Chapter 6 we will see that there is
actually a quicker way to do this kind of thing using parents. Nonetheless, although this might
have seemed like a lot of effort, it may help you to appreciate the work that goes into a com-
mercial game. They usually take at least 18 months to program and require hundreds of
thousands of lines of code to make them work!

Now let’s set about creating the final set of boxes that appears in the bottom-left corner
to show the player which box is coming next. This adds an important element of gameplay,
allowing the player to plan ahead and adapt their strategy based on where it would be most
useful for the next box to fall. It requires quick thinking and takes a bit of practice, but it helps
to create a challenging and rewarding game. The “next box” objects are very simple to make,
but we’'ll need four of them again—one for each type of box.

Creating next box object resources for the game:

1. Create a new object called obj next stone, give it a stone box sprite, and enable the
Solid option. That's it, so click OK to close the object properties.

2. Create objects for obj next metal, obj next wood, and obj next cardin the same way.

I'm sure you'll be relieved to find out that’s all the boxes we need to create for this game!
However, while the falling boxes have actions to turn them into stationary boxes, there are no
actions yet for turning next boxes into falling boxes, or creating next boxes in the first place.
That’s because we are going to create a controller object to do this. A controller object is usu-
ally an invisible object (it doesn’t have a sprite), which performs important actions on other
objects. Our controller object will use a Step event to continually check if there is a falling box
on the level. If not, then it will turn the current next box into a falling box and create a new
next box. In this way, the controller object will maintain a constant cycle of new and falling
boxes until the level is completed—or the player gets squished!

75

76 CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Creating a controller object resource for the game:

&

o @E9Ee

D

o]

1. Create a new object called obj controller and leave it without a sprite.

2. Add a Step, Step event and include the Test Instance Count conditional action

(control tab). This counts the number of instances of a particular object on the level
and tests it against a value. Choose the obj falling stone object; leave Number as 0
and Operation as Equal to. This creates a condition that is true if the number of falling
stone box instances on the level is equal to 0 (i.e., there aren’t any?).

. Include three more Test Instance Count conditional actions to check if there are no

instances of obj falling metal, obj falling wood, and obj falling card in the same
way. When combined, these conditional actions will make sure that there are no falling
boxes of any kind on the level before creating a new one.

. Include a final Test Instance Count action for the obj laz stand object, but set

Number to 1 and the Operation to Equal to. This makes sure that there is an instance
of the standing Lazarus object on the level, rather than any of the animating objects.

. Include a Start Block action. This will group together all the actions that need to be

performed to create the new box.

. Include a Change Instance action and select Object for Applies to, so that it changes all

instances of one kind of object on the level into another. Set Object to obj next stone,
Change Into to obj falling stone, and select yes to perform events (the Create event
for the falling box needs to be performed to start it in the correct position). This will
turn any stone next boxes into stone falling boxes. The action should now look like
Figure 4-5.

Change Instance

Applies to
L]
) Self
) Other - ;.
(&) Object: | obi_next_stone | é{‘
change into: gobi_falling_stone | a
perform events: E}'ESI | a

o (X cees]

Figure 4-5. Change the next box into a falling box.

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

7. However, because the type of box will be chosen randomly, we don’t know what kind of
next box object the next box will actually be. To cover all bases, add three more Change
Instance actions to change obj next metal objects into obj falling metal objects,
obj next woodintoobj falling wood, and obj next cardintoobj falling cardin the
same way.

7] 8 Nextwe need to randomly create one of the next box objects. Include a Create Random
action (mainl tab) and select the four different next box objects. Set X to 0 and Y to
440, and leave Relative disabled. Remember that when Relative is disabled, X and Y are
measured from the top-left corner of the screen. These coordinates will therefore put
the new next box where it should be in the bottom-left corner of the screen. The action
should now look like Figure 4-6.

9. Finally, include an End Block action to conclude the block of actions that are depend-
ent on all the conditions above them being true.

4

Applies to
2 @se

() Other

) Object:

ohiect 1: | obl_next_stone | é{‘

object 2 !Dbi_next_metal | é{‘

object 3: !obi_next_wood | é{‘

ohiect 4: | obl_next_card | a
W iD |
" !44[‘ |

[Relative
7

Figure 4-6. The Create Random action allows us to randomly create one of the four next
box objects.

This long list of conditional actions means that the block of actions will only be performed
if all these conditions are true. In other words, if there are no instances of obj falling stone
and no instances of obj falling metal and no instances of obj falling wood and no
instances of obj falling card and one instance of obj laz stand, then Game Maker will
create a new box.

You might have thought it a bit odd that we need to check that there is a standing Lazarus
object as part of our conditions for creating new boxes. If you look back at one of the Jump To
Position actions in the Create events of the falling boxes, you will remember that we use the
obj laz stand.x variable to start the object in the correct position. However, Game Maker
can't provide that object’s x position if it has turned into an animation object, so it will create
an error in the program. So to avoid this possibility we check that there’s a standing Lazarus
instance on the level before creating new falling boxes.

Now it’s finally time to test our new objects.

77

78 CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Editing the test room to add new instances:
1. Reopen the test room we created by double-clicking on it in the resource list.

2. Remove all the extra wall instances so that it leaves just a pit with walls on both sides
and across the bottom.

3. Add one instance of the controller object into the room (easily forgotten!)

Note When an object has no sprite, it shows up in the Room Properties form as a blue ball with a red
question mark. This will not appear in the game, but reminds us that this (invisible) object is there when
we are editing the room.

Now run the game and test it carefully. Make sure that the box that appears in the bottom
left is actually the box that falls down the screen next and check that heavier boxes are crush-
ing lighter ones. As usual, if there are any problems, then carefully check the instructions or
load the game from Games/Chapter04/lazarus2.gmé6 on the CD.

Finishing Touches

We now have all the basic ingredients of the game in place and there are just a few more things
to do before we could call it a finished game. There’s no way to complete a level yet, so we
need to include the stop buttons that will halt the boxes and move the player onto the next
level. Some sound effects would also be nice—as would a background and a title screen. We're
obviously going to need a few different levels, too. However, before all that we're going to add
something cool that will endear the player to Lazarus’s plight a little more.

No Way Out!

You may have noticed that there’s another animation we haven'’t used yet that shows Lazarus
looking afraid. We're going to show this animation when he’s in a hopeless situation and
knows he is about to meet his end. However, rather than create a new object for this
animation like we did with the others, we’re just going to change the sprite of the standing
Lazarus object when he becomes afraid. We can do this because “being afraid” does not need
any actions of its own: it has exactly the same behavior as standing—it just looks different.
We're going to control this animation within the Step event, so that the correct animation is
chosen at any point in time. We will use Check Collision actions to detect if Lazarus is sur-
rounded by stacks of boxes two or more high on both sides. The Check Collision action
performs actions only when there is a collision at a particular point. In this way, we can
detect whether Lazarus is trapped on all sides and set his animation to be afraid.

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Editing the standing Lazarus object to detect for being trapped:

1. Reopen the standing Lazarus object and select its Step event, so that you can see the
existing actions for this event.

. Include the Check Collision conditional action (control tab) below the last action in
the list. Set X to 40 and Y to 0, and enable the Relative option. This checks for a box to
the right of Lazarus.

€y

3. Include another Check Collision action with X set to 40, Y set to -40, and the Relative
option enabled. This checks for a box diagonally to the right of Lazarus.

. Include two more Check Collision actions: one with X set to -40 and Y set to 0, and the
other with X set to -40 and Y set to -40. Both should have the Relative option enabled.
These check for boxes to the left and diagonally to the left of Lazarus.

5. Finally, include a Change Sprite action, using the “afraid Lazarus” sprite. This will now
only happen if the four conditional actions above are true and Lazarus is literally
boxed in.

® @& &
=Y

Hopeless as this situation may sound, it is actually possible for Lazarus to be saved from
this predicament by a heavy block crushing the stack of boxes on one side of him. If this hap-
pens, then we would like Lazarus to stop being afraid. We could include conditional actions to
check for this happening and change his sprite back to normal. However, we can achieve the
same effect simply by including a Change Sprite action at the very beginning of the list of
actions for this event. Changing into the standing Lazarus sprite by default will make the
sprite revert back to normal if he stops being trapped.

Editing the standing Lazarus object to detect for being freed:

1. Select the Step event for the standing Lazarus object so that you can see the existing
actions for this event.

2. Include a Change Sprite event at the very beginning of the list of actions (you can drag
actions about if it falls in the wrong place). Set it to change into the standing Lazarus
sprite.

You might want to play the game now and make sure that this new feature is working cor-
rectly. Features like this don’t change the gameplay directly, but add to the playing experience
and make the game more entertaining to play.

Adding a Goal

The player’s goal is to reach one of the stop buttons, so that it halts the machinery and stops
dropping the boxes. However, in practice all the buttons really need to do is move the player
onto the next level when the standing Lazarus object collides with them. If there are no more
rooms, then it will show a completion message and restart the game.

79

80

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Creating a new button object resource for the game:

1.

2.

=z

JPOR@

(=]

4

10.

Create a new sprite called spr button using Button.gif.

Create a new object called obj button and give it the button sprite. Set Depth to 10 so
that it appears behind other objects.

Add a Collision event with the standing Lazarus object and include a Sleep action in it
(main2 tab). Set Milliseconds to 1000 (1 second) and Redraw to true. This should give
a brief pause for the player to realize they have completed the level.

Include a conditional Check Next action (mainl tab).

. Include a Next Room action (mainl tab).

6. Include an Else action followed by a Start Block action.

Include a Display Message action (main2 tab) and set Message to something like
“CONGRATULATIONS#You have completed the game!”

. Include a Different Room action and set New Room to the first room (which is the

only room at the moment).

. Finally, include an End Block action and close the object properties.

Edit your test room and add a stop button on either side at the top of the pit.

Starting a Level

At the moment, boxes start falling as soon as the player enters the level, leaving them with no
time to gather their thoughts and prepare their strategy. We're going to help them out by creat-
ing a starter object that displays the title for a couple of seconds before changing itself into the
controller object and starting to drop boxes.

Creating a new starter object resource for the game:

1.

2

3.
4.

5.

Create a new sprite called spr_title using Title.gif.
Create a new object called obj starter and give it the title sprite.

Add a Create event and include a Sleep action in it. Set Milliseconds to 2000, for a wait
of two seconds.

Include the Change Instance action and select the controller object. Close the object
properties.

Edit your test room, and remove the controller object using the right mouse button.
Add the starter object at an appropriate place instead.

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Note You may have noticed that the title doesn’t appear on the first level when you run the game. This is
because the starter object’s Greate event is executed before the window appears, so it has already turned
into a controller object by the time we see the room. This can be remedied using an Alarm action to add a
delay, but we won’t worry about this for now, and we’ll come back to alarms in Chapter 6.

Sounds, Backgrounds, and Help

It's about time we made the game feel a bit more professional by including sound effects and
music in the game. This is quite simple and you can probably handle most of this on your own
by now, but here are some pointers to help you on your way:

1. All the sound resources can be found in the Resources/Chapteros folder on the CD.

2. You'll need to add sounds for Music.mp3, Wall.wav, Crush.wav, Squished.wav, Move.wav,
and Button.wav and play them at the right times using the Play Sound action
(mainl tab).

3. A good place to start playing the music would be in a new Game Start event for the
controller object. You'll find the Game start event in Other events. Don’t forget to set
Loop to true in the Play Sound action to make the music loop forever.

4. You'll need to add crush or wall sound effects to the existing Collision events between
falling box objects and stationary box objects.

5. Add a new Create event for the squished Lazarus object, and play the squished sound
effect there. This will save you the trouble of putting it in each of the four collision
events between falling boxes and Lazarus.

6. Adding Create events to play the move sound effects would also be a good way of
handling the four moving Lazarus objects.

7. Finally, you'll need to play the button sound effect in the Collision event between the
button and Lazarus.

Test the game and make sure all the sound effects are playing in the correct place. If you
don’t hear a sound when moving around, check that you set Perform Events to yes in the
Change Instance actions that change into the animating objects. If you didn’t, then Game
Maker won't perform the Create events that contain the sound effects.

A backdrop to the levels would also improve the look of the game, and we should put
together some kind of help text for the player too.

82 CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Creating a background resource and Game Information:
1. Create a background using Background.bmp from Resources/Chapter04 on the CD.

2. Reopen the properties form for the room and select the backgrounds tab. Select the
new background from the menu halfway down on the left.

3. Double-click on Game Information in the resource list and add a help text for the
game. Remember to include the name of the game and who it was created by (you),
along with a short description of the aims and controls.

Levels

All that is left now is to create a variety of levels for your game. We talk about level design in
much more detail in Chapter 8, but it’s probably best to start with shallow pits and buttons on
each side to keep things fairly easy. However, as the levels progress they can become as deep
and narrow as you like! Making the floor of the pit higher will make the level harder, as the
player has less time to react to the falling boxes. You could also place stationary boxes in
unhelpful places or place the buttons in mid-air to vary the challenge. One sure way to make
the game more challenging is to increase the Speed setting on the settings tab for each level.
This controls the number of steps per second on each level. It defaults to 30 steps per second,
but higher numbers will make the game faster and harder and lower numbers will make it
slower and easier.

Now it’s up to you to create some interesting levels for the game. Remember that duplicat-
ing rooms will save you a lot of work, so right-click on the room in the resource list and select
Duplicate from the pop-up menu. Once you've made your levels, let someone else try to play
them and see how difficult they find it. Game designers often find their games very easy
because they have played them so much, but it is often much harder for everyone else. This
is something you should always try to bear in mind when designing your games.

One very last thing: you may find it helpful to add a cheat in your game that allows you to
skip between levels. You can do this as follows.

Editing the controller object to add cheats:
1. Open the properties form for the controller object.
2. Add a Key Press, <N> event and include the Next Room action.

3. Add a Key Press, <P> event and include the Previous Room action.

Good luck, and don'’t forget to remove these cheats when the game is finally finished!

CHAPTER 4 = TARGET THE PLAYER: IT'S FUN BEING SQUISHED

Congratulations

You'll find the final version of the game in the file Games/Chaptero4/lazarus3.gmé on the CD.
You might want to extend the game a bit further by adding opening and closing screens, or
adding a scoring system to the game so that players can compete for the highest score. If
you're feeling particularly adventurous, why not try adding some bonuses that sometimes
appear when boxes are crushed by each other? One of these could even transform all the
stationary boxes into stone boxes—or card boxes if you're feeling mean!

By making this game, you have learned how to animate characters, both by creating dif-
ferent objects and by switching sprites. You have also seen how to use a controller object to
manage the game, plus you've learned how to use Else actions to provide extra control over
the outcome of conditional actions. In fact, you've learned a lot about Game Maker over these
past few chapters, and it’s about time we gave you a bit of a break. With this in mind, the next
chapter is all about game design and you won’t have to go near events and actions again until
Chapter 6. In the meantime, we'll be thinking more carefully about the designs behind the
games we've made so far, and we’ll be exploring what makes them fun to play.

83

CHAPTER 5
EEN

Game Design: Interactive
Challenges

Once you've caught the game-making bug, then it’s only a matter of time before you’ll want
to start designing your own games. There’s nothing more satisfying than realizing your creative
ideas and seeing other people enjoy them, and that’s precisely what making games is all
about. We don’'t want you to feel that you have to finish this book before trying out your own
ideas—have a go whenever you feel ready, as you can always come back for more knowledge
and ideas when you need them. Nonetheless, there is more to designing a good game than
having a cool idea for a character or story, so these design chapters are here to provide some
helpful advice for designing your own projects.

What Makes a Good Game?

We all know when we're playing one; we become completely absorbed by it and the hours fly
by in no time at all, but how do you create a game like that? Well, unsurprisingly there’s no for-
mula to guarantee success—otherwise everyone would be doing it! However, there are some
general principles that can help you to create better games by thinking more deeply about the
way that games work. To become a good game designer, you need to learn to see beyond the
surface features of games and consider what makes them fun at a basic level. This is some-
thing that takes time and practice, but we'll try to give you a taste of what we mean. Think
about a particularly good section of your favorite game for a moment. Visualize where it is set,
what your character is doing, and how it is interacting with the other characters and objects in
the game. We're going to take fighting giant squids in Zelda: Wind Waker as an example:

The skies turn black and there is a crack of thunder as a giant squid rises from the sur-
face of the ocean and towers over Link's tiny boat. A whirlpool forms around the
monster’s enormous body and the boat begins to circle helplessly around it in the cur-
rent. The music reaches fever pitch and Link'’s only hope is to destroy all of the squid’s
bulging eyes with his boomerang before he is inevitably dragged down to a watery grave!

Now this next part may seem a little strange: imagine that something has gone wrong
with your PC or console and all the characters and objects in the game have turned into col-
ored cubes! The music and sound effects have stopped too, but everything else is working just
the way it always did. Now try to visualize your scene again:

85

86 CHAPTER 5 ° GAME DESIGN: INTERACTIVE CHALLENGES

A giant pink cube appears in front of my brown cube and I begin circling around it,
gradually getting closer on each turn. There are eight white cubes attached to the pink
cube—all of which must be destroyed before I get too close. To do this I must target white
cubes in my line of sight and launch a yellow cube to fly out and destroy them. The
yellow cube then returns back to me, and I can target and launch it again.

Now here’s the question: would the cube version of the game still be fun to play? Well, it
certainly won't be as much fun to play, since it has lost most of its original atmosphere and
emotional involvement. However, for good games (like Zelda), some of the gameplay that
makes it fun to play would still be there. It may look ridiculous—and you definitely wouldn’t
buy it like that—but part of the game’s original magic remains.

Not quite convinced? Okay, take a look in the Games/Chapter0s folder and play the exam-
ple games, evil squares.gm6, galactic squares.gmé, and lazarus squares.gmé6. These are the
three games you've already made but with simple shapes and sound effects, instead of the
usual backgrounds, characters, and music. Give each game a chance and you'll soon see that
there is still fun to be had once all the pretty graphics, characters, and stories have been com-
pletely stripped away (see Figure 5-1). Once you're convinced, read on . . .

" Galactic Squares [Z| |i,r5_<

Figure 5-1. Galactic Squares is not very pretty, but it'’s still fun to play.

Game Mechanics

Okay, so good games are still playable even after all the fancy graphics and sound effects have
been removed, but what creates this gameplay? Game developers call it the game mechanics:
the basic rules and interactions that make a game fun to play. Understanding game mechanics

CHAPTER 5 © GAME DESIGN: INTERACTIVE CHALLENGES

is probably the most important part of becoming a good game designer. Sure, creating appeal-
ing characters and stories is really important too, but they need to be combined with solid
game mechanics to create a good game. Think of game mechanics as the engine of a car and
the graphics, characters, and storyline as the bodywork and finishing. A rusty old wreck with a
Formula One engine may not win the Grand Prix, but it stands more chance than a Formula
One car with a rusty old engine!

Of course, the best games combine great game mechanics with superb graphics, believ-
able characters, spectacular music, and compelling storylines. However, these other aspects
are not unique to computer games, and there are plenty of books about filmmaking, story-
telling, music, and artwork that cover these topics far better than we could. Therefore, these
design chapters will focus on the core skill that distinguishes game designers from designers
of other forms of entertainment: game mechanics.

Interactive Challenges

What's the difference between a film, a toy, and a game? It might sound like the start of a bad
joke, but it’s actually a question that highlights the two main features that make games special
as a form of entertainment. The most obvious difference between films and games is that
games are interactive—players have some control over the outcome of games, but film audi-
ences do not. Toys (like train sets, for example) are also interactive, as players have control
over what they want to happen when they play with them. However, toys don’t provide chal-
lenges for the player in the same way that games do. A player can create their own challenges
using a toy (like deciding to race trains), but those challenges have to be created by the player
and are not part of the toy. A game normally comes with its own set of challenges that the
player must overcome in order to win the game.

So you can think of games as being “interactive challenges,” therefore it’s easy to deduce
that both interaction and challenge are key elements of game mechanics. For the remainder of
this chapter, we'll look at the various ways these two elements improve the game mechanics
of your designs and make them more fun to play.

Game Genres

We often group games into different genres, and one way of doing this is to look at the types of
interactions and challenges that different kinds of games provide. Games are evolving all the
time, so there will never be a final list of genres that everyone agrees on. Nonetheless, we have
made our own list of the main genres. As you read each one, try to distinguish the role of the
game mechanics from the part that the characters, stories, and graphics play in the experience
of that genre.

e Action games (e.g., sports, combat, platform, racing) usually involve fast and furious
interactions with lots of physical challenges that leave little room for mistakes.

* Simulator games (e.g., flight sims, racing sims) usually involve realistic interactions
and physical challenges with no room for mistakes at all.

¢ Strategy games (e.g., war games, puzzle games, god games) often involve slow or turn-
based interactions with long-term intellectual challenges that involve planning and
organization.

87

88 CHAPTER 5 ° GAME DESIGN: INTERACTIVE CHALLENGES

e Adventure games (e.g., point-and-click) usually let players interact at their own pace,
providing short-term puzzle-based challenges and long-term story-led challenges.
These challenges are often impossible to fail if you keep trying.

* Role-playing games (e.g., online RPGs) usually provide slower interactions with long-
term story-led challenges. However, these are often less important to the player than
the story and challenges that the player creates for themselves while developing their
character.

Of course, most games don't fall neatly into one genre and may combine several kinds
of interactions in one game. Nonetheless, a game designer does need to consider players’
expectations of a particular genre; a role-playing game that requires lightning reflexes or a
turn-based shoot-em-up might not go down too well! It’s also worth remembering that new
genres are only created when rules and conventions are broken, and the great games of the
future are unlikely to follow the same conventions as today.

Challenges

We hope that you can see from the game genre descriptions that different players want
different kinds of challenges from the games they play. Despite this, there are some general
guidelines that can help you to provide better challenges in your games. We're going to apply
these guidelines to the Evil Clutches game from Chapter 2 to see if we can turn it into a better
game. All the new versions of the game can be found in the Games/Chapteros folder on the CD.
We've provided these as . exe files because we just want you to play them and notice how the
changes are affecting the gameplay. You really don’t need to know how they are made, but you
can find the corresponding Game Maker project files in the Games/Chapter05/Registered
directory on the CD. However, because these versions contain effects that are only available in
the registered version of Game Maker, you will need to use the executables to play the game if
your copy is still unregistered.

Difficulty

Challenges are important in games, because beating challenges makes players feel good about
themselves. For this to happen, a challenge must be easy enough for a player to achieve but
hard enough to be worth bothering with. Players give up on games that are too easy, because
there is no satisfaction from beating a challenge that you could do blindfolded. However, play-
ers give up on games that are too hard because it makes them feel bad about themselves for
failing, and they don't feel they are making any progress.

At the moment our Evil Clutches game is far too difficult at the start of the game, but in
other ways it’s too easy as well. It is too hard because just one touch of a demon will kill the
dragon, and the game can be over before the player has worked out the controls! However, it
can become too easy later on if players realize that they can always safely hide just offscreen
and swoop in to rescue the hatchlings.

Even once these issues have been fixed, the game will still be too difficult for some players
and too easy for others. People have different amounts of experience with computer games,
but the best games are the ones that players of all levels can get into. We're going to make sure
that our game appeals to as many people as possible by adding a difficulty menu at the start of

CHAPTER 5 © GAME DESIGN: INTERACTIVE CHALLENGES

the game, allowing the player to play in easy, medium, or hard mode. So in combination with
the other tweaks, these are the changes that we're going to make to the first version of our
game:

e Display a health bar for the dragon starting with 100 points of health.

e Make the dragon lose only 10 health points for each collision with a demon.
 Prevent the dragon from leaving the screen.

* Add a difficulty menu at the start of the game for easy, medium, or hard mode.

The file evil newl.exe contains these four changes to the game. Play the new version
and see what you think. We've changed the difficulty of the game by adjusting the chance of
demons and hatchlings appearing in the different modes. There are now extra demons and
fewer hatchlings in the hard mode and fewer demons and extra hatchlings in the easy mode.
When you're setting the difficulty of your games, remember that game developers always find
their own games easier than anyone else because they play them so much. If you make your
own games harder and harder as you get better and better at them, then they will end up too
difficult for other players. Always get someone else to test your game to make sure you've got
the difficulty levels about right, and if you can’t complete the game yourself, then don't expect
anyone else to be able to!

Goals

Challenges are created by setting clear goals for players to achieve. If a goal is unclear or for-
gotten, then it no longer creates a challenge and it loses its power. In the last version of the
game, we sneaked in some extra actions that made saving the lives of 50 hatchlings the ulti-
mate goal of the game. However, you won't have felt any more challenged, since you didn’t
know about this new goal! In fact, even once you know about it, it’s difficult to keep track of
how many hatchlings you've saved, so any interest in the challenge doesn't last very long. It
may sound obvious, but to keep a player challenged you need to make sure that they know
what their goals are, and how they are progressing with them. Our game currently has two
main goals for the player: saving a set number of hatchlings and beating the top score on the
high-score table. We can make sure that these goals challenge the player by clearly displaying
information about the player’s progression toward these goals on the screen.

When players know what their goals are and how close they are to completing them, it
also begins to create the what-if effect when the player loses. The closer a player gets to their
goal, the more likely they are to think, “What if I had just been a little bit quicker, or hadn’t
made that one, stupid mistake?” Of course, this only happens if players get close to their
goals—if they don’t make it past the first obstacle, then they are more likely to think “As if!”
than “What if?” This means that a player who rescues 40 of 50 hatchlings is more likely to have
another go than a player who only rescues 10 of 50 hatchlings. We could make our game so
easy that everyone can rescue 40 hatchlings, but then the game would become too easy to
complete and lose its challenge. Instead, we can be more devious and reduce the chance of
hatchlings appearing as more hatchlings are rescued. So if the chance of the first hatchling
appearing is 1 in 50 (a 50-sided die), then the second might be 1 in 52, the third 1 in 54, and so
forth. That way, by the time the last hatchling appears, the chance of the hatchling appearing
has changed to only 1 in 150 (a 150-sided die!). In practice, this just means that hatchlings are

89

CHAPTER 5 ° GAME DESIGN: INTERACTIVE CHALLENGES

released more quickly at the start of the game than at the end. This will make it easier for all
players to rescue a good number of hatchlings—and trigger the what-if effect—without
making the game too easy overall.

So to incorporate all these improvements to our game’s goals, we’ll make the following
changes to the second version of the game:

e Clearly display how many hatchlings have been rescued and how many need to be
rescued in total.

* Clearly display the player’s score and the top high score to beat from the high-score
table.

¢ Reduce the chance of hatchlings appearing, based on the number that have already
been rescued.

Play the file evil new2.exe containing these three changes. We hope you'll agree that
we're already starting to make progress toward a game that is much more fun to play than
the original (see Figure 5-2).

* | bvil Clutches Score: 2200

o) ®-.5/50 HE

. _SCORE:2700

e * . High: 1300

Figure 5-2. Finally we can see our goals and how far away we are from achieving them.

Rewards

Rewards are extremely important for maintaining a player’s interest in a game’s challenges. It
can take a lot of time and effort to complete a challenge, so a reward makes players feel much
better about it. It also makes it much more likely that they’ll want to complete other chal-
lenges offered by the game. The high-score table already provides a reward system for scores,
but we could do with something extra special for reaching the end of the game. So, once all the
hatchlings have been rescued, we will:

CHAPTER 5 © GAME DESIGN: INTERACTIVE CHALLENGES

e Display a congratulatory message.
e Award the player with a large bonus score.
e Show the player an amusing conclusion to the story of the game.

Although it is most important to reward players for completing the game’s goals, it also
helps to occasionally give them small rewards for no reason at all. Games often do this in the
form of health bonuses and other kinds of pickups, which appear at random intervals. The
fact that they appear randomly is significant, as it gives players hope that a pickup may come
along at any point. This means they are more likely to stick with the game when they’re in a
desperate situation where they might otherwise give up—and if a bonus does arrive just in
time, then the feeling of relief is enormous. It also adds to the power of the what-if effect, as
players can now think, “What if I'd had just one more health bonus—maybe I'll be luckier next
time?” We're going to add our own random rewards to Evil Clutches by making the following
changes:

* Make the boss demon randomly drop health and shield bonuses.

* Randomly add between 5 and 25 percent to the dragon’s health when a health bonus is
collected.

e Make the dragon immune to taking damage for 15 seconds when a shield bonus is
collected.

All of these new rewards are included in the file evil new3.exe. The animation at the end
of the game is an example of the kind of animated rewards you can quickly create in Game
Maker with a little bit of imagination. It's not exactly a beautifully rendered cut-scene (see
Figure 5-3), but it should make players smile.

_CONCRATULATIONS!

4

Figure 5-3. If you mess with dragons, then you're bound to get your fingers burned!

92

CHAPTER 5 ° GAME DESIGN: INTERACTIVE CHALLENGES

Subgoals

Subgoals can enhance your games by providing short-term or optional challenges for your
players to take up. Most games include a long-term goal that must to be met in order to com-
plete the game, but these can often seem very distant and hard to achieve at the start of the
game. Subgoals give the player something to aim for in the short term, and good games tend
to provide a series of both short- and long-term goals to draw the player through the game.
Our game is not very long, but there is certainly room for an additional short-term challenge.
We'll challenge the player to shoot demons without taking damage, and reward them by
powering up their fireballs as their demon tally increases. To achieve this we will:

e Count and display the number of demons shot in a row and reset the count back to 0
when the dragon takes damage.

¢ Limit the number of fireballs in the air at once, based on the current demon count.
Begin with a limit of 2 and add 1 to this for each 10 demons on the tally.

¢ Scale the size of the fireball and add smoke effects to make the fireballs look more
impressive as the demon tally increases.

Optional subgoals are a good way of providing extra challenges to advanced players,
which other players can choose to ignore. These often include collecting particular items to
unlock extra options, or hidden levels that less adventurous players are unlikely to find. These
are really just a different way of balancing the difficulty of your game, so that players naturally
find the right level of challenge for their own abilities. For our game we’re going to turn the
collection idea on its head and add a subgoal of trying not to accidentally shoot hatchlings!
To make this work, we’ll include the following changes:

* Each time a hatchling is accidentally shot, subtract one from the total number of hatch-
lings that have to be rescued (already displayed).

e At the end of the game, award the player bonus points based on the total number of
hatchlings they’ve saved.

Ideally this should have its own special reward at the end of the game, but to keep it
simple we've just rewarded the player handsomely in points for each hatchling saved. You
can play a version of the game with these new subgoals in the file evil new4.exe.

Interactivity

As well as challenges, the other main feature of games is their interactivity. Interactivity is
about putting the player in control. Good games leave the player feeling in control of the
game, while bad games make them feel powerless. As with challenges, players of different
game genres often prefer different levels of control, but there are some common ways of
helping to maintain a feeling of control in your games.

CHAPTER 5 © GAME DESIGN: INTERACTIVE CHALLENGES

Choices and Control

To give players a feeling of control, we need to provide them with choices that seem to have
areal effect on the outcome of the game. Action games constantly require players to make
choices about the physical actions of the game (jumping, shooting, flying, etc.) and so provide
an immediate feeling of control. However, games of all genres should ensure that enough
choices are available to create this feeling too. Adventure games without enough choices can
seem very linear—as if you are being forced through a path that has already been decided for
you. Whenever you add choices to your games, think carefully about the difference they really
make: is it worth having ten different weapons that all work in the same way? What'’s the point
in allowing the player to choose what to say to a character if it always has the same outcome?
Adding these kinds of features won't generally make your game any worse, but changing them
so that they make a real difference will give more control to your players and make them more
involved in the game.

We're going to add a choice of characters to our game, so that the player can choose to
play the mother dragon or the father dragon. To make sure that this is a choice worth making,
we’re going to give each character a different special ability, which affects the way they play.
The mother dragon will be able to call hatchlings to her—causing them to speed up and get
out of harm’s way more quickly—and the father dragon will be able to blast demons at close
quarters with a cloud of steam—sending them crashing back into other demons. To add the
new character and include different separate abilities, we will:

e Add the ability to select between playing the mother and father dragons at the start of
the game.

¢ Add the ability for dragons to activate their special abilities using the Ctrl key.

e Make hatchlings at the same vertical level as the mother dragon speed up when she
calls them to her.

* Make demons close to the father dragon fly back into other demons when he blasts
them with a cloud of steam.

Figure 5-4 shows the character selection screen. You can see the effect of all these new
changes by playing the file evil new5.exe.

Control Overload!

Of course, it is possible to have too many choices in a game—particularly if extra choices
mean extra controls. Most people can remember between five and nine things at once. If you
have more than five controls in your game, some players will have forgotten what the first key
does by the time they read what the last key does. In general, it’s probably not a good idea to
have more than two controls plus the arrow keys to move around. Try to make controls auto-
matically perform different functions depending on the situation: pressing the spacebar might
pick up items, open doors, or attack creatures, depending on whether the player was near to
an item, a door, or a creature. That way, you can include lots of interesting features without
needing extra controls for the player to remember.

Fortunately, this is one area where our Evil Clutches game is okay. Some players may find
the special move control a bit too much to cope with at first, but because these moves are
optional, we don’t need to worry about them too much.

93

94

CHAPTER 5 ° GAME DESIGN: INTERACTIVE CHALLENGES

)

Figure 5-4. It’s one big happy family—and he’s the daddy!

Unfair Punishment

With the right level of control in your games, players will feel that they are the makers of their
own fortunes. However, you can still quickly convince them otherwise by punishing them for
something that isn't under their control. Such punishments are usually not included inten-
tionally, but friendly characters with suicidal habits and enemies that blow up your objectives
are both examples that have accidentally made it into commercial games. Avoiding unfair
punishment is usually about making sure your game still works correctly, even when a player
isn't playing the game in exactly the way you intended. The best way to find these problems is
to get your friends to test your game thoroughly. They’ll soon tell you if they think that some-
thing is unfair about your game.

Our game occasionally punishes the player unfairly. Fireballs go straight through demons,
so it’s easy to accidentally kill a hatchling that is flying behind one. The hatchling may not
have even appeared until after the player pressed fire, but it is too late for them to do anything
about it. When this happens the player may feel frustrated at being punished for something
that was out of their control. We'll solve this problem by making the fireballs disappear when
they kill a demon. This also has the effect of making the game a bit more fast and frantic,
which is not a bad thing for a shoot-em-up.

CHAPTER 5 © GAME DESIGN: INTERACTIVE CHALLENGES

Audio Feedback

In the final version of Evil Clutches, we're also going to add more sound effects to improve the
game mechanics. At first glance, this may seem to go against the idea that mechanics are
about rules and mechanisms—not niceties like sound. However, sounds are not just included
in games just because they “sound nice,” but also because they provide useful feedback to the
player about what they are doing. If you go back to the Galactic Squares example from the
start of the chapter, you'll notice that it still includes very basic sound effects. These sounds
are designed to quickly inform the player about whether their interactions with the game are
good or bad. Audio designed in this way can play an important part in helping to naturally
steer the player in the right direction, whereas otherwise they might end up confused. Con-
fused players do not feel in control, so audio has a role to play in this too.

Designing sound effects that both inspire the senses and inform the player in this way is
not easy, and commercial games have their sound effects designed by professional sound
engineers. See Chapter 15 for more information on the kinds of tools that you can use to try
to do this for yourself. You'll find our sound effects in the Resources/Chapteros folder and can
hear them in action by playing evil new6.exe from the Games/Chapteros folder. This final ver-
sion of the game includes the following changes to the unfair punishment and audio:

e Make fireballs disappear when they collide with a demon.
* Add audio feedback for shooting fireballs.

¢ Add audio feedback for when the dragon takes damage.

Add audio feedback when a hatchling is saved.

Add audio feedback for pickups.

Add audio feedback for menus.

95

96

CHAPTER 5 © GAME DESIGN: INTERACTIVE CHALLENGES

Summary

Now that you've played the final version of the game, we hope you found it much more fun
than the original from the end of Chapter 2. In this chapter we've learned that challenges and
interactivity are a central part of the game mechanics that make games fun to play. We've
looked at a number of general principles that can help you to create better interactive chal-
lenges and followed them through with the Evil Clutches example. These are certainly not the
only principles of good game design, and you are unlikely to design a good game simply by
following a set of rules. Nonetheless, here is a summary of the main issues as a starting point
for your own Game Maker projects:

¢ Challenge the player by
» Providing clear, achievable goals and giving feedback on the player’s progress.
* Including both long and short-term goals.
¢ Adding difficulty levels and optional subgoals for players of different abilities.
* Reward the player
¢ For achieving goals and subgoals.
e Randomly.
* Make the player feel in control by
* Giving them choices that seem to make a real difference to the game.
¢ Not confusing them with too many controls.
¢ Not punishing them for things out of their control.
* Giving the player audio feedback about their interactions with the game.

If you apply these principles with a bit of thought and care, then you should find that they
can help you to make your own games more fun to play too. That concludes this chapter and
the second part of the book—we’ll look at some more design principles at the end of the next
part, but for now we're joining the creatures of a Japanese coral reef to learn something about
parenting . . .

PART 3

Level Design

The quality of a game’s level design can make or break a game. Your game’s popularity
will sink like a brick if you don’t put enough time into getting it right!

CHAPTER 6
EEN

Inheriting Events:
Mother of Pearl

These days, some of the most inventive games come out of Japan. Japanese designers have

a history of taking crazy design scenarios and turning them into brilliantly addictive games
(e.g., Puzzle-Bobble, Pikmin, Gitaroo Man). Japanese games also have their own distinctive
look derived from manga comics. In this chapter we’ll make our own game in this style, based
around the classic game of Breakout. In doing so, we'll learn how to use parent objects, one of
Game Maker’s most powerful features. As always, though, we’ll need to start by writing a quick
description of our game design.

Designing the Game: Super Rainbow Reef

Titles for Japanese games often start with the word “Super” (Super Monkey Ball, Super Smash
Brothers, Super Street Fighter, etc.), so we're calling this game Super Rainbow Reefto keep in
with the theme. Here’s the design:

The monstrous Biglegs have driven the peace-loving creatures of Rainbow Reef from their
ancestral homes. Despite their inexperience in the ways of war, Pop and Katch have invented a
way of combining their skills to fight back against the Biglegs. For this incredible feat, Pop must
bounce from Katch's shell to attack the evil invaders. Katch must then move quickly to save Pop
from plummeting into the deep waters below. The cowardly Biglegs often retreat behind coral
defenses, so our heroes must be prepared to smash their way through if they are to finally drive
the Biglegs from Rainbow Reef!

There will be no direct control over Pop’s movement, and he’ll bounce freely around a play-
ing area enclosed by walls on all sides except the base. The left and right arrow keys will move
Katch horizontally along the base in order to bounce Pop from Katch’s shell and stop him from
falling out of the level. The collision point along Katch’s shell will determine the direction of
Pop’s bounce, and so allow the player to control his movement. Bounces toward the left will send
Pop left and bounces toward the right will send him right. Pop’s movement is also affected by
gravity, and each time he collides with Katch, he gets slightly faster so that the game becomes
increasingly difficult.

The game will have several levels, each containing a number of Biglegs that Pop must col-
lide with in order to complete the level. Most levels will also contain coral block defenses, which
must be knocked out of the way in order to reach the Biglegs. Breaking blocks will score extra

points and special blocks give the player extra rewards, but they don’t have to be destroyed to 101

102

CHAPTER 6 © INHERITING EVENTS: MOTHER OF PEARL

finish a level. If Pop leaves the screen, the player loses a life and Pop is brought back into play.
Once three lives have been lost, the game ends and a high-score table is displayed. A typical level
is shown in Figure 6-1.

Columns Score: 200

1

£
]
]
e
]
9% ¢«
]

Figure 6-1. Here'’s a typical level in Super Rainbow Reef.
This time we will also make a separate feature list. It consists of all the different kinds of
enemies and blocks that are available to create each level:
¢ Enemies:
o Large stationary Biglegs
e Small stationary Biglegs
¢ Large Biglegs that move horizontally
¢ Small Biglegs that move horizontally
* Blocks:
e Multicolored blocks that can be destroyed for points
* Solid blocks that cannot be destroyed
* Blocks that must be hit twice before they are destroyed
e Invisible solid blocks that cannot be destroyed
 Blocks that create two extra copies of Pop when destroyed

¢ Blocks that give the player an extra life

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

This should give enough information to create the game. All resources for this game have
already been created for you in the Resources/Chapter06 folder on the CD.

A Game Framework

From now on, we are going to use a standard framework for many of the games we create so
that they all have start and end screens that work in the same way. This framework will have
the following parts:

e Atitle screen that displays the name of the game and has buttons to start a new game,
load a saved game, show help, display the high-score table, and quit the game. Game
developers normally use the term front-end to refer to the part of the game that allows
the player to make selections like this. This screen will also be responsible for starting
the background music and for initializing any other game settings, like the score.

e The actual game.

* The end of game screen that is shown when the game has been completed. This
displays a congratulatory message and activates the high-score table, after which the
game returns to the front-end.

You should already be familiar with how to do most of this from previous chapters, but
this time we're adding button objects so that the player can control what is going on.

The Front-End

We'll begin by creating the front-end. Commercial games often have developers who devote
all their time to creating the front-end for a game. Fortunately, ours won’t be that complicated;
all we need is a background image, a title sprite, several button sprites, and some background
music. Let’s start by adding these to the game.

Creating the front-end resources for the game:

1. Launch Game Maker if you haven't already and start a new empty game.

2. Create a new sprite called spr title using Title.bmp from the Resources/Chapter06
folder on the CD (you can use Title.gif instead if you prefer the look of it).

3. Create the five button sprites—spr button start, spr button load, spr button help,
spr_button scores, and spr button quit—using the appropriate sprites from the
same directory. Disable the Transparent option on these sprites.

4. Create a new background called background1 using Background1.bmp from the
Resources/Chaptero6 folder.

5. Create a new sound resource called snd_music using Music.mp3 from the
Resources/Chaptero6 folder.

This gives us all the resources we need for creating the front-end, so now we can define
the objects for it. We'll start with the object that displays the title sprite, sets the score to 0, and

103

104

CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

plays the background music (we’ll give this object some other functions as well later on). After
that we'll create the button objects for the front-end.

Creating the title object resource for the front-end:

1.

2.
3.

Create a new object called obj title and give it the title sprite.
Add a Create event to the object and include a Set Score action to set Score to 0.

Add an Other, Game Start event and include a Play Sound action (mainl tab) in it.
Select the background music, and set Loop to true so that the music plays forever.

Click OK to close the properties form.

Creating the button objects resources for the front-end:

1.

2.

12.
13.

14,

15.

Create a new object called obj butstart and give it the start button sprite.

Add a Mouse, Left Pressed event and include the Next Room action (mainl tab). The
Left Pressed event happens when the user clicks on an instance’s screen position with
the left mouse button.

Click OK to close the Object Properties form.

Create a new object called obj butload and give it the load button sprite.

. Add the Mouse, Left Pressed event and include the Load Game action (main2 tab).

File Name must be the same name as the file that we use to save the game to later on,
so it’s easiest to leave this as the default setting.

Click OK to close the Object Properties form.

Create a new object called obj buthelp and give it the help button sprite.

. Add the Mouse, Left Pressed event and include the Show Info action (main2 tab).

This action shows the player the text entered under Game Information.
Click OK to close the Object Properties form.

Create a fourth button object called obj butscores and give it the score button sprite.

. Add the Mouse, Left Pressed event and include the Show Highscore action (score tab).

Feel free to play around with the settings to make the table look nice.

Click OK to close the Object Properties form.

Create a final object called obj butquit and give it the quit button sprite.

Add the Mouse, Left Pressed event and include the End Game action (main2 tab).

Click OK to close the Object Properties form.

This gives us all the objects we need. Now we need to create a room to put them in that
acts as the front-end itself.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

Creating the front-end room resource for the game:

1. Create a new room resource called room frontend (settings tab). Give the room a cap-
tion, then scale the room window so that you can see as much of the room as possible
(preferably all of it).

2. Switch to the backgrounds tab. Click the menu icon to the right of where it says
<no background> and select the background from the pop-up menu.

3. Next switch to the objects tab. Place one instance of each of the button objects along
the bottom of the room (or somewhere else if you prefer). A logical order would be
Start, Load, Help, Scores, Quit.

4. Select the title object and position it in the center of the room (remember that you can
move an instance by holding the Ctrl key). Your room should now look something like
Figure 6-2.

Note When you add an instance on top of an existing instance, the existing instance is deleted. This can
be avoided by disabling the Delete Underlying option at the bottom left.

= Room Properties
RCIFEEEY:

5 Snap

I| hackgrnunds_ wigms | .
obiects | seftings | tiles | -

e

<

Object to add with left mouse: 3 - i 3 ol

!nhi_tille = Lk Y 5 b
.

Left mowse button = add | st =
+=Ait= = no snap i A i - : i -
+ =Skt = mulnpls = — L™ 1 w4l
+2Chi= = move = o

Right mouse button = delete
+<Shifts = delste all
+alhi= = popup menu

Delete underlying

.‘;3

o 416 will ohject: obj_title id: 100013

Figure 6-2. The front-end room looks like this in the room editor.

105

106 CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

Finally, you should write a short help file for the game. You may find this easier once we
have finished making the game, but we’ll remind you how to do it now anyway.

Adding game information to the game:
1. Double-click on Game Information near the bottom of the resource list.

2. Type the name of the game, your name as the creator, a short description of the
objectives, and a description of the controls.

3. Click on the green checkmark at the top left to close the editor.

You might want to test the framework now to check that it works correctly. An error mes-
sage will appear if you click the start button, but that’s fine as there are no rooms to go to yet in
the game. Likewise, the load button will not do anything as there is no saved game to load, but
the help, scores, and quit buttons should all work correctly.

The Completion Screen

We'll create the completion screen in a similar way to the one described in the previous chap-
ter. It will contain one object that displays some text congratulating the player and adds 1,000
points to the player’s score. There will then be a short pause and the high-score table will be
displayed. After this, the player returns to the opening screen.

To achieve this, we're going to use new kinds of events and actions called alarms. Alarm
actions work like a countdown for triggering alarm events. Alarm actions are given an amount
of time to wait, and an alarm event is executed at the moment that time runs out. Like in other
places in Game Maker, this time is measured in steps, so for each alarm action you indicate
how many steps there should be before the alarm event takes place. Each instance of an object
can have up to 12 alarms that can be used to make things happen at set points in the future.

Creating a congratulation object that uses alarm events and actions:
1. Create a new sprite called spr congrats using the file Congratulation.gif.

2. Create a new object called obj congrats and give it the congratulation sprite.

. Add a Create event and include the Set Alarm action (main2 tab). Set Number of Steps
to 120 to create a delay of 4 seconds (as there are 30 steps in a second). Leave In Alarm
No set to Alarm 0. See Figure 6-3.

]

. Include a Set Score action below the alarm using a New Score of 1000, and enable
Relative so that the score is added on.

.‘-
=y

. Add an Alarm, Alarm 0 event. This is the event that will now happen four seconds after
the alarm action is executed. Include a Show Highscore action in this event and give it
the same background and font settings as before.

[}

. Include the Different Room action (mainl tab) and select the front-end room.

[=2]

7. Click OK to close the Object Properties form.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

Applies to

@ ekt
() Other
) Object:

number of steps: I12D |
in alarm no: !Alarm a | B

[Relative

T

Figure 6-3. Set an alarm clock to 120 steps, which is equivalent to four seconds.

Creating a completion room for the game:

1. Create a new room called room completed (settings tab) and give it an appropriate
caption.

2. Switch to the backgrounds tab. Click the menu icon to the right of where it says
<no background> and select the background from the pop-up menu.

3. Switch to the objects tab. Select the congrats object and position it in the top-left
corner of the room.

It is time to test your work and try all the buttons again. Playing the game should now
take you straight to the closing screen (you've finished all the levels as there are none!). You
can now also add your name to the high-score table and view it again from the front-end. If
any of this isn’'t working correctly, then carefully check that you've followed the instructions
correctly. Alternatively, you can load this version from Games/Chapter06/rainbowl.gmé on
the CD.

We'll use this same framework (with different graphics) for many of the remaining games
in the book. We won't have the space to explain all the steps again in so much detail, so make
sure that you understand it well before continuing. Otherwise, you can either refer back to
this chapter, or simply load each game with the framework already made to save yourself
some work.

Bouncing Starfish

Now that our framework is complete, let’s get started on the fun part: developing our game.
In this section, we will create Pop, Katch, and the level boundary so that we can get Pop
bouncing around the screen. As usual, we begin by creating the relevant sprites for the game.

107

108 CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

Creating new sprite resources for Pop, Katch, and the wall:

1. Create a sprite called spr wall usingWall.gif from the Resources/Chapter06 folder on
the CD. Disable the Transparent option so that the wall appears completely solid.

2. Create a sprite called spr pop using Pop.gif. Click the Center button to place the origin
of the sprite (where it is “held” from) at its center. Moving Pop from his center will
make it easier to work out how far he has landed along Katch’s shell when they collide.
Also enable the Smooth Edges option to make the edges of Pop’s legs look neater.

3. Create a sprite called spr_katch using Katch.gif. Click the Center button again and
enable the Smooth Edges option too.

The next step is to create the corresponding objects. The wall object is extremely easy:
it doesn’t do much except act as a solid boundary for the playing area.

Creating the wall object resource for the game:
1. Create a new object called obj wall and select the wall sprite.
2. Enable the Solid option and click OK to close the form.

Next we will add an object for Katch. Although Pop and Katch are both on the player’s
team, only Katch can be directly controlled by the player. The left and right arrow keys need to
move Katch in the appropriate direction when there are no walls in the way. We will check for
walls using a Check Object action that tells us if another kind of object is nearby. By making
this check before moving Katch left or right, we can make sure that we only move her when
her path is not blocked.

Creating the Katch object resource for the game:
1. Create a new object called obj katch and give it Katch'’s sprite.
2. Add a Keyboard, <Left> event.

@ 3. Include the Check Object conditional action (control tab) in this event. Select the wall
object, set X to -10 and Y to 0, and enable the Relative option. This will check for wall
objects 10 pixels to the left of Katch. Also enable the NOT option. This reverses the con-
dition so that the next action (to move Katch) will be executed only if there is not a wall
object in the way. The action should now look like Figure 6-4.

72| 4 Include the Jump to Position action (move tab). Set the same values for Xand Y
2 (-10 and 0) and enable the Relative option so that Katch moves into the position that
we just checked was free of walls.

5. Add a Keyboard, <Right> event.

@ 6. Include the Check Object action (control tab). Select the wall object, set X to 10 and Y
to 0, and enable the Relative option. Also enable the NOT option again. This performs
the same check for walls to the right.

i 7. Include the Jump to Position action (move tab). Set X to 10 and Y to 0, and enable the
- Relative option. This moves Katch to the right if there are no walls blocking the way.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL 109

Note All conditional actions have a NOT field. This is used to indicate that the following actions are
executed only if the condition is not true.

Check Object
Applies to
@ © Self
() Other
) Object:
aa
object: |0bi_wa|| | EL
S |-‘ID |
W |D |
Relative NOT
5K]

Figure 6-4. This action checks that there is no wall object to the left of Katch.

Tip When there is just one action that must be executed as a result of a condition, there is no need to put
start and end blocks around it.

That completes the Katch object; now we need to create an object for Pop. This will be
more complicated as it needs to move around and bounce against the walls. We'll also add
some gravity so that Pop moves more realistically, and floats back down toward Katch at the
bottom of the screen.

Creating the Pop object resource for the game:

1. Create a new object called obj pop and give it Pop’s sprite. Set its Depth to 10 so that it
appears behind other objects in the game (this will look better later on).

2. Add a Create event and include a Move Free action with a Speed of 12. We want Pop
| to start moving upward, but we’ll add a little variation by typing random(60)+60 as the
Direction. The random(60) part will produce a random number between 0 and 60, so
by adding 60 to this we will get a value between 60 and 120. This means we will get a
direction somewhere between the two green arrows in Figure 6-5.

110 CHAPTER 6 © INHERITING EVENTS: MOTHER OF PEARL

Note Angles in Game Maker work slightly differently from the way you might be used to. There are still
360 degrees in a full circle, but 0 degrees is horizontally to the right and they increase in an anticlockwise

direction (see Figure 6-5).

3. Include a Set Gravity action (move tab), setting Direction to 270 (directly downward,
see Figure 6-5) and Gravity to 0.2. This means that a downward speed of 0.2 will be
added to Pop’s current speed in each game step, pulling him slowly toward the bottom
of the screen. The form should now look like Figure 6-6.

120 90 60
180 / \/ 0
Gravity
270

Figure 6-5. Angles in Game Maker work differently from the way you may be used to.

- Applies to
& Self
() Other
) Dbject:

direction: i 270 |

gravity: | 0.4 |

[Relative

T

Figure 6-6. This action sets the gravity downward by using an angle of 270 degrees.

4. Add a Collision event with the wall object and include a Bounce action. Set the Precise
option to precisely so that it takes into account the exact appearance of the colliding
sprites to calculate the result of the collision.

Now we need to create actions to make Pop bounce off Katch’s shell. We could use the
Bounce action again, but then Pop would always bounce in the same way. We want the player

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

to be able to control the direction of the bounce, so we need to alter it according to how far
Pop bounces along Katch’s shell. A bounce in the center of the shell should send Pop straight
up the screen, but a bounce toward the end will send Pop diagonally in that direction (see
Figure 6-7). In fact, we're going to send Pop bouncing off at an angle between 50 and 130
degrees, depending on his collision position.

pixels pixels
Figure 6-7. The angle that Pop bounces will depend on how far along Katch’s shell he collides.

To achieve this, we need to compare Pop and Katch’s horizontal positions at the moment
they collide. Remember that both Pop and Katch’s sprites have their origins in the center, so
when their horizontal (x) positions are equal, then Pop is exactly in the middle of Katch’s shell.
When this is the case, we want Pop to rebound with an angle of 90 degrees, straight upward.

However, if Pop’s x-position is smaller than Katch’s x-position, then Pop has landed on the
left side of the shell, which means he should bounce more to the left—with an angle of more
than 90 degrees. Similarly, if Pop’s x-position is larger than Katch'’s, then he has landed on the
right and we need a direction smaller than 90 degrees. You should remember from previous
games that we can get an object’s own x-position using the x variable, and the x-position of
another object (like Katch) by putting its name in front of it like this: obj katch.x.

So we can work out the difference between Pop’s and Katch’s horizontal positions by sub-
tracting one from the other: obj katch.x-x. This difference will be a positive number if Pop
lands on the left side of Katch and a negative number if he lands on the right (try working it
out on paper for a few example positions, if it helps). It will also be exactly zero when Pop is in
the middle. So actually, all we need to do is add 90 to this difference (90+obj katch.x-x) and it
will give us the range of angles between 50 and 130 degrees we're after (see Figure 6-7). We'll
also make the game get harder over time by increasing Pop’s speed each time he collides with
Katch.

Adding a collision event to the Pop object for colliding with the Katch object:

1. Add a Collision event with the Katch object and include a Move Free action in it. Type
P 90+0bj katch.x-x in Direction and speed+0.3 in Speed (this adds 0.3 to the current
speed).

2. Finally we need to restart the room when Pop falls off the bottom of the screen. Add
the Other, Outside Room event and include the Restart Room action (mainl tab).

112 CHAPTER 6 © INHERITING EVENTS: MOTHER OF PEARL

These are all the objects we need to start testing our game, so let’s quickly create a test
room to do this. This room must be inserted between the front-end room and the completed
room in the resource list.

Creating a new test room resource for the game:

1. Right-click on room completed in the resource list and select Insert Room from the
pop-up menu that appears. This will insert a new room before room completed and
open the properties window for the new room.

2. Switch to the settings tab and call the room room test.
3. Switch to the backgrounds tab and set the background for the room.

4. Our wall sprites are 20 by 20 pixels, so set both Snap X and Snap Y to 20 in the toolbar
at the top of the Room Properties form. The grid in the room will then change accord-
ingly to make it easier to place the walls.

5. Switch to the objects tab. Select the wall object and place wall instances all the way
along the left, top, and right boundaries of the screen. Remember that you can hold
the Shift key to add multiple instances and use the right mouse button to delete them.

6. Select the Katch object and place one instance in the middle at the bottom of the
screen. Also add one instance of the Pop object somewhere in the center of the room.
The room should now look like Figure 6-8.

[= Room Properties |:||E||z|
v 9 D210 6 srepx® [srepy|20 | [B] | o~

! backgrounds vigws |

obiects | settings | tiles R

F]\'._ e T _f.".

2

[|

in

Obiject to add with left mouse:

. = | -
[obipop =} | » i e
Left mouse button = add | 3 '} e
+=dit= = ne smap | - i . o |] |
+ =5hifts = multiple | | ¥ i ; o w B
+ =200l = mave | : 4 L5 i a L
Right mowse button = delete | gl L |\ ot i g %
+ 25hifts = delete all a3k 3
+2kl= = popup menu i
Delete underlying L [%
w400 yi 280

. A
4

}i

Figure 6-8. The test room is empty, but functional.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

Note Sometimes when you close a room form you get a warning message saying that there are instances
outside the room. This can happen when you accidentally move the mouse outside the room area while
adding objects. You will be asked whether these instances should be removed—simply click the Yes button.

Now we can test our game, so save, run, and play the game. Try out the test level and
make sure that Pop bounces off the walls and Katch’s shell as planned. If there are problems,
check your steps or load the current version from Games/Chapter06/rainbow2.gmé on the CD.

Biglegs

It's about time we put some goals into the game, so we're going to create objects for the Biglegs
next. Pop must destroy all of the Biglegs on each level by colliding with them. The level is
completed when all the Biglegs have been destroyed, so we're also going to create a controller
object to check when all the Biglegs have gone. Despite their evil reputation, basic Biglegs will
do very little and just destroy themselves when Pop collides with them.

Creating Bigleg object resources for the game:

1. Create a sprite called spr bigleg using Bigleg.gif from Resources/Chapter06 on
the CD.

2. Create an object called obj bigleg and give it the Bigleg sprite.
3. Add a Collision event with Pop and include a Destroy Instance action (mainl tab).

4. Include a Set Score action (score tab), with New Score set to 200 and Relative enabled
= (remember that the Relative option will add the value to the current score).

Next we'll create our controller object. Each level of the game (every room except the
front-end and completion rooms) will need an instance of the controller object to count the
number of Bigleg instances. It will do this in every step, and when it reaches 0 it will pause
briefly before advancing to the next room.

Creating a controller object resource for the game:

1. Create an object called obj controller. No sprite is required.

2. Add the Step, Step event and include the Test Instance Count action in it (control tab).
Indicate the Bigleg object as the object to count and leave the default values to check
when the number of Biglegs is equal to zero.

3. Include the Start Block action to begin a block of actions that depend on the check.

b

| 4 Include aSleep action (main2 tab) with Milliseconds set to 1000 (1 second).

. Include a Next Room action (mainl tab).

d[]

6. Finish the current block by including an End Block action.

113

114

CHAPTER 6 © INHERITING EVENTS: MOTHER OF PEARL

Next we'll add some instances of these objects to a couple of test rooms. We'll make two
rooms by copying the first test room; this saves us from having to set the background and
place the walls again.

Duplicating test room resources for the game:

1.

2.

Reopen the test room by double-clicking on it in the resource list.

Put one instance of the controller object into the room. It doesn’t matter where, so
put it somewhere like the bottom-left corner where it will be out of the way of other
instances.

. Put two instances of the Bigleg object in the top-left and -right corners of the room.
. Close the properties form for the room.

. Right-click on the test room in the resource list and choose Duplicate from the pop-up

menu. This will create a copy of the room and open its properties form.

. Switch to the settings tab and give the room a better name (change the caption too if

you like).

. Switch to the objects tab and use the right mouse button to remove the two Bigleg

instances.

. Add a few instances of the Bigleg object in the top center of the room instead. Also add

some instances of the wall object below them to make it harder for Pop to reach them.
This room should then look something like Figure 6-9.

Figure 6-9. This test room already provides a challenge.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

Save and test the game at this point to see whether it works correctly.

We now have all the ingredients we need to make a simple game, but it would be nice if
there were some variation in the kinds of Biglegs that the player encounters through the game.
An obvious candidate is a smaller Bigleg, making it more difficult to hit. To make this, we could
repeat all the earlier steps and let the controller object count both the normal objects and the
small objects. However, there is a much quicker and easier way to do this: by using parents.
We'll explain how these work shortly, but for now follow these steps to see how powerful this
feature of Game Maker can be.

Creating the small Bigleg object resource:
1. Create a sprite called spr bigleg small using the file Bigleg small.gif.

2. Create an object called obj bigleg small and give it the small Bigleg sprite.

3. Click the menu icon next to the Parent field (on the left of the new object’s properties
form) and select obj bigleg as the parent. The left part of the Object Properties form
should now look like Figure 6-10.

4. And that’s all you need to do! Close the form by clicking the OK button.

Mame: |obi bigleg smal |
Sprite
‘g% Ispr_bigleg_small =

Visible [Selid

Depth: |0
[] Persistent

Barent: |obj_higleg g{‘
Mask: I<sameassprite> é{‘

) Show nformation

2 Figure 6-10. Set the parent field for the small Bigleg.

We now have a small Bigleg object that does everything that the normal Bigleg object
does. This is because the small Bigleg inherits the behavior (all the events and actions) of the
normal Bigleg when we make the normal Bigleg its parent. This means it reacts in the same
way to collisions with Pop and will automatically know to increase the player’s score by 200
and destroy itself. There’s no need to add these events and actions again since they are auto-
matically inherited from the parent. Also, as a child of the Bigleg, the small Bigleg is now
considered to be a Bigleg too. This means that the controller object automatically includes
itin its count to see how many Biglegs are left in the room.

Try this out by adding some small Biglegs to the test rooms. The small Biglegs are
destroyed when Pop hits them, and the level is only completed when all the Biglegs of both
types have been removed. We can use this same parenting technique to create a moving
Bigleg that inherits all the same behaviors but adds a new behavior of its own as well.

115

116

CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

Creating the moving Bigleg object resource:
1. Create an object called obj bigleg move and give it the normal Bigleg sprite.

2. Click the menu icon next to Parent and select obj bigleg as the parent. Also set the
Depth field to 10 so that it appears behind other objects.

3. Add a Create event and include the Move Fixed action in it. Select both the left and
L)

right directions (to make Game Maker choose randomly between them) and set
Speed to 8.

|§| 4. Add a Collision event with the wall object and include the Reverse Horizontal action

in it. Close the form by clicking the OK button.

This moving Bigleg automatically inherits the behavior of the normal Bigleg (to destroy
itself when Pop collides with it) and adds to that some extra behavior to make it move back
and forth. In the same way, we can quickly add a small moving target.

Creating the small moving Bigleg object resource:
1. Create an object called obj bigleg move small and give it the small Bigleg sprite.

2. Click the menu icon next to Parent and select obj bigleg move as the parent. Also set
the Depth field to 10 so that it appears behind other objects.

3. Close the form by clicking the OK button.

This time were using the moving Bigleg as the parent, which in turn has the normal Bigleg
as a parent. This means it inherits the behavior of both the moving Bigleg and the normal
Bigleg. Add a few small moving Biglegs to the test levels and carefully check that the game is
working correctly. You will find a version of the game so far in Games/Chapter06/rainbow3.gmé
on the CD.

Parent Power

As you have seen, parents are extremely powerful and can save you a lot of time. The Biglegs
are quite simple, but parents can save you hours of repeated work for objects with many
events and actions. You could just duplicate objects to save time, but any changes you want to
make afterward have to be made to both the original and each of the copies you made. How-
ever, when you change a parent, the changes automatically apply to the children of that
parent too—a very useful feature.

Next we present a number of rules that determine the way that parents work in different
situations. We'll describe these now for future reference, but don’t worry if they don’t make
complete sense on your first read. Everything should become a lot clearer once you are work-
ing with real examples, so bend down the corner of the page so that you can refer back to
them when you're using parents in your own games.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

Inheriting Events. A child inherits all the events (and actions) of its parent. A child can
have its own events as well, but these only apply to the child and not the parent. When
both the child and parent have the same event with different actions, then the actions of
the child are used for the child, and the actions of the parent are used for the parent.

We saw this earlier when the moving Biglegs inherited events from normal Biglegs but
added their own extra events to make them move as well. Naturally, this did not make the
normal Biglegs move as well because parents don’t inherit events from children.

Actions on Objects. When an action refers to a parent object, this includes instances of
the child object as well. However, when an action refers to the child object, it does not
include instances of the parent object.

So when counting the number of instances of normal Biglegs, it automatically included
all of the other Bigleg objects that were children of it. The same rule applies to any action that
can be applied to an object. However, remember that Self and Other refer to instances, not
objects, so applying an action to them does not affect their parent or child objects.

Collision with Objects. A collision event with a parent object also applies to collisions
with children of that object. However a collision event with a child object does not apply
to collisions with parents of that object.

This will be useful later on as we want to have many different types of coral blocks that
Pop can collide with. By making all of these blocks have the same parent, we only need to
define one collision event between Pop and the parent block, and it will also work for all the
child blocks.

Parenting Objects. Parents can have parents, which can have parents, etc. However, you
must not create cycles of parents, so if P is the parent of C, then C cannot also be the
parent of P

This may sound confusing, but makes perfect sense if you think about it—you couldn’t be
your own father or grandfather, so it doesn’t work in Game Maker either.

Lives

In this kind of game, it is common to give the player a fixed number of lives to try and com-
plete it. Game Maker includes events and actions specifically to handle lives. These allow you
to set and display the number of lives as well as testing for when the player has none left. We'll
use our controller object to look after the actions that control lives, but first we need to set the
number of lives at the start of the game. The best place to do this is in the title object.

117

118

CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

Setting the lives in the create event of the title object:

1.

IEZ.

Double-click the title object in the resource list to open its properties form.

Select the Create event to view its Actions list. Include a Set Lives action (score tab),
with a value of 3.

Next we'll make the player lose a life when Pop falls out of the room. However, one of our
planned features for the game will make copies of Pop so that there can be several Pops flying
around the screen at the same time. So the player should only lose a life when the last surviv-
ing Pop falls out of the room. When this happens, we'll reduce the player’s lives and create a
new Pop in the center of the screen.

Editing the Pop object to add an event for being outside of the room:

‘.3 3.
N 4,
El 5.
6.
~ 1.

. Double-click the Pop object in the resource list to open its properties form.

. Select the Outside Room event and remove the Restart Room action from it (left-click

on the action once and press the delete key, or right-click on the action and select
delete). Include a Destroy Instance action in its place.

Include the Test Instance Count action (control tab). Indicate the Pop object as the
object to count and leave the default values to check if this is the last Pop leaving
the screen.

Include the Start Block action to begin a block of actions that depend on the test.

Include a Set Lives action with New Lives set to -1 and the Relative option enabled.
This will then subtract one from the number of lives.

Include a Create Instance action. Select the Pop object; set X to 320 and Y to 300.

Finally, include an End Block action and close the Pop object’s properties.

When the player loses their last life, we need to show the high-score table and return to
the front-end room. We'll use the controller object to check this using a special event.

Editing the controller object to add an event for having no more lives:

1.

2.
3.

Double-click the controller object in the resource list to open its properties form.

Add the Other, No More Lives event and include a Show Highscore action in it. Use the
same Background and Font as before.

Include the Different Room action and indicate the front-end room. Close the con-
troller object’s properties form.

Finally, we should display the number of lives on the screen—otherwise, the end of the
game could be a bit of a shock to the player! To do this, we're going to use a new event called
the Draw event, which requires a little explanation. Normally each object automatically draws
its own sprite in the correct position on the screen. However, the Draw event allows you to
draw something else instead, such as several different sprites or colored shapes and text.
When the Draw event is included, the object’s sprite stops being drawn automatically and
your own actions in the Draw event are executed instead.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

We're going to use the Draw event of the controller object to show the player’s remaining
lives as a number of small shells along the bottom of the screen. Game Maker even provides
the Draw Life Images action to help us do this.

Creating a sprite for the controller object to draw as lives:
1. Create a sprite called spr katch small using the file Katch small.gif.

2. Double-click on the controller object in the resource list to open its properties form.

3. Add the Draw event and include the Draw Life Images action (score tab). Set X to 25
and Y to 470, and select the small Katch sprite (as shown in Figure 6-11).

E{wLﬂehrm —

b3 |25 |
v [470 |
image: !Spr_katc:h_small | é{‘
[Relative
o

Figure 6-11. This action will draw the lives as images.

Note Adding a Draw event to any object stops that object from automatically drawing its own sprite
and allows you to include your own draw actions instead. This means that if you want to draw something
in addition to the object’s normal sprite, you need to draw the normal sprite as well. If you always know
what sprite this should be, then simply use a Draw Sprite action. However, if you want to be able to
change the sprite using the Set Sprite action, then include an Execute Code action (control tab) and
type draw_sprite(sprite index, image index, x, vy) into it. This small piece of GML code (see
Chapter 12) will then draw the sprite in the usual way in addition to any other draw actions in the event.

When you play the game now, there should be three small images of Katch in the bottom
left of the screen. One should disappear each time Pop goes off the screen, and the game
ends with a high-score table when they’re all gone. You'll find a version of the game so far in
Games/Chapter06/rainbow4.gmé on the CD.

119

120

CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

Blocks

There are only so many ways of varying a level by placing Biglegs in different places, so we're
going to provide them with some defenses to give the level design a bit more scope. We'll start
with simple (coral) blocks that deflect Pop but are destroyed in the process. These blocks are
just there to get in the way, but later we'll go on to make some special blocks as well.

Normal Blocks

We can use parents to quickly create a number of different-colored blocks. These blocks will
all behave in exactly the same way, and the different colors are just to make the Rainbow Reef
live up to its name.

Creating block object resources for the game:

1. Create seven sprites called spr_block1 to spr_block7 using the files Block1.gif to
Block7.gif. Disable the Transparent option on them all to make them appear solid.

2. Create a new object called obj block1 and give it the first block sprite. Enable the Solid
option and close the properties form. That’s it for this object.

3. Now create six more objects for the other six blocks using the appropriate sprites.
Enable the Solid option on each one and set Parent to obj blockl. They are now all
children of the first block.

Editing the Pop object to add a collision event with blocks:

1. Reopen the Pop object’s properties form from the resource list.

IE 2. Add a Collision event with obj block1 and include the Bounce action with Precise set

to precisely.

3. Include the Set Score action with New Score set to 20 and the Relative option enabled.
\r

4. Finally, include a Destroy Instance action and set Applies to to Other. This indicates

that it is the block rather than Pop that should be destroyed.

This is the only collision event that we need to define between Pop and the seven types of
block. This is because all the other blocks are children of the first block, so this event applies to
collisions with those blocks as well. Add some of the new blocks to the test levels and play the
game to make sure everything works as expected.

Solid Blocks

Next we'll create a solid block that Pop can'’t destroy. This behaves in the same way as the wall
object, so we'll use that as its parent.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

Creating a solid block resource for the game:

1. Create a sprite called spr block solid usingBlock solidi.gif. Disable the
Transparent option to make it appear completely solid.

2. Create a new object called obj block solid and give it the solid block as a sprite.
Check the Solid option and give it the wall object as a Parent.

We do not need to define any collision events between Pop and solid blocks because
we've already defined collision events with its parent, the wall. Let’s also create an invisible
solid block to give the player a surprise in later levels. This is actually probably not such a good
idea from a design perspective. Players will just think it’s a bug or feel unfairly punished when
Pop bounces off in an unexpected direction. However, it illustrates a point about collisions
with invisible objects, so we’ll make it as an example.

Creating an invisible block resource for the game:

1. Create a new object called obj block solid inv and give it the solid block as a sprite.
Enable the Solid option and give it the wall object as a Parent. Also disable the Visible
option to make the object invisible.

So even though this object is invisible, it still needs a sprite. Game Maker needs a sprite to
work out when objects collide with each other, and an object without a sprite will not trigger
any collision events.

Special Blocks

Now let’s add a few more interesting blocks. This one will require two hits to destroy it.

Creating the double block sprite and object resources:

1. Create a sprite called spr _block double usingBlock double.gif. Disable the
Transparent option to make it appear completely solid.

2. Create a new object called obj block double. Give it the double sprite and enable the
Solid option. Close the object properties.

Adding a collision event to the Pop object for colliding with the double block:

1. Reopen the Pop object’s properties form and add a Collision event with the double
block object.

3. Also include a Set Score action with a New Score of 20 and the Relative option

Izl 2. Include the Bounce action in this event and set Precise to precisely.
enabled.

4. Finally, include a Change Instance action. Set Applies to to Other and select
obj block1 so that the double block changes into a normal block.

5. Close the Object Properties form.

121

122 CHAPTER 6 © INHERITING EVENTS: MOTHER OF PEARL

Next we'll add a block that creates two additional instances of Pop, making it look as if he
has split into three (like some starfish can do).
Creating the split block sprite and object resources:

1. Create a sprite called spr _block split usingBlock split.gif. Disable the Transparent
option to make it appear completely solid.

2. Create a new object called obj block split and give it this new sprite. Enable the Solid
option and set the Parent field to obj blocki.

3. Add a Collision event with the Pop object and include a Create Instance action.
Set Object to obj _pop, then type other.x into X and other.y into Y (see Figure 6-12).
This will create the new Pop at the same position as the old Pop.

4. Include another Create Instance action exactly the same as in step 3.

Create Instance

Applies ta
) Self
() Other
) Dbject:
object: Iobi_pop | é{‘
S !Dther.x |
y | othery |
[Relative
T

Figure 6-12. Let’s create some extra starfish.
Finally, let’s add a block that gives the player an extra life.

Creating the life block sprite and object resources:

1. Create a sprite called spr block life usingBlock life.gif. Disable the Transparent
option to make it appear completely solid.

2. Create a new object called obj block life.Enable the Solid option and set the Parent
field to obj blocka.

Iil 3. Add a Collision event with the Pop object and include a Set Lives action. Set New Lives
to 1 and enable the Relative option.

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL

It is time to test all these blocks by adding them to our test levels. Feel free to experiment
and see what incredible combinations of levels you can come up with, or just use ours by
loading the file Games/Chapter06/rainbows.gmé from the CD.

Polishing the Game

We've already done most of the hard work, so now it’s time to put everything together into a
playable game.

Sound Effects

All the games we've made so far have benefited from sound effects, and this is no exception.
As you saw in the previous chapter, sounds help the player to correctly interpret their interac-
tions with the game. We'll add different sounds for when Pop hits a wall, a block, a Bigleg or
Katch'’s shell, as well as when Pop falls out of the screen.

Creating sound resources and playing them in the appropriate events:

1. Create sounds using the files Sound wall.wav, Sound block.wav, Sound katch.wav,
Sound bigleg.wav, Sound lost.wav, and Sound click.wav, and give them appropriate
names.

2. Play the “wall sound” in the Pop object’s Collision event with the wall object.

3. Play the "block sound" in the Pop object's Collision event with the block object and
the double block object.

4. Play the “katch sound” in the Pop object’s Collision event with the Katch object.
. Play the “lost sound” in the Pop object’s Outside Room event.
6. Play the “bigleg sound” in the Bigleg object’s Collision event with the Pop object.

7. Play the “click sound” at the top of the Left Pressed event of each of the button objects.

BEEEEE]E

Saving Games and Quitting

If you can remember back to when we were making the framework, we included a button in
the front-end to load a saved game. However, in order for this to work, we need to allow the
player to save the game at some point using the Save Game action. We'll add an event for this
on the controller object when the S key is pressed.

Note Game Maker must be able to write to the filename you provide in the Save Game action. This
wouldn’t normally be a problem, but it does mean you’ll get an error message if you run many of the
example games directly from the CD-ROM. This is because Game Maker cannot save files to a CD, so
copy the game files to your hard disk and run them from there in order to fix the problem.

123

124 CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

Adding a save game action to the controller object:
1. Reopen the controller object’s properties form from the resource list.

2. Add a Key Press, Letters, S event and include the Save Game action (main2 tab). You
can leave File Name set to the default as it is the same as we used for the Load Game
action in the front-end.

3. Include the Display Message action (main2 tab) and type “GAME SAVED” into Message,
so that the user knows the game was saved at this point.

4. Add aline to the Game Information describing how the game can be saved.

When you press the Esc key during play, the program ends completely, but it would be
better if this returned the player back to the front-end. Adding actions to return to the front-
end is simple enough, but this won’'t work on its own. We also need to disable the default
behavior of the Esc key from within the Global Game Settings.

Editing the controller object and global game settings to disable the Esc key:

1. Reopen the controller object’s properties form from the resource list.

2. Add a Key Press, Others, <Escape> event and include the Different Room action
(mainl tab). Select the front-end room and close the controller object’s properties
form.

3. Double-click the Global Game Settings at the bottom of the resource list.
4. Switch to the Other tab and disable the Let <Esc> end the game option.

5. Also disable the Let <F5> save the game and <F6> load a game option as we have our
own save and load system.

6. Click OK to close the form.

There are many other settings that can be changed in the global game settings, but most
of these are for advanced use. We will learn more about some of them later in the book.

Caution Beware of disabling the Let <Esc> end the game option and forgetting to include your own
method for quitting your game (using the End the Game action). If this happens, you’ll need to press
Ctrl+Alt+Delete to bring up the Task Manager and end the task from the Applications list. This will then
end the game and return you to Game Maker.

A Slower Start

Currently, Pop starts moving as soon as the level begins, giving the player no time at all to find
their bearings. The player may have been at the far side of the screen when Pop last fell out, so
it would be fairer to give them a little time to move Katch into a better position. To avoid any

CHAPTER 6 " INHERITING EVENTS: MOTHER OF PEARL 125

complications when new Pop instances are created during play, we're going to make a second,
stationary Pop object. This will have an Alarm Clock in its Create event that changes it into
the normal Pop when the time is up. This stationary Pop object will then be the one that gets
positioned in each room at the start of the game.

Creating a new stationary Pop object resource:

1. Create a new object called obj pop start. Give it the Pop sprite and a Depth of 10.

2. Add a Create event and include a Set Alarm action (main2 tab) with 30 Steps
(1 second).

3. Add an Alarm, Alarm 0 event and include the Change Instance action in it. Set
Change Into to obj pop and indicate yes to Perform Events (see Figure 6-13). This will
ensure that the new Pop object starts moving in a random direction by performing its
Create event.

4. Reopen the Pop object’s properties form and select the Outside Room event. Double-
click the Create Instance action and change the Pop object to obj pop start.

5. Go through each room replacing the Pop objects with the start Pop object.

Applies to
@
& Self
) Other
() Object:
change into: |0bi_pop | B
perform events: Iyes | a

o

Figure 6-13. This action changes the stationary Pop into a normal Pop and performs the
Create event.

Creating the Levels

Before we start creating the final levels, we’ll add some “cheats” to make it possible to skip
through the levels for testing them. We'll use the N key to move to the next level, the P key to
go to the previous level, and R key to restart the current level. We'll also add a cheat that adds
an extra life when you press the L key.

126

[=] @]]

CHAPTER 6 = INHERITING EVENTS: MOTHER OF PEARL

Editing the controller object to add cheats:
1. Reopen the controller object’s properties form from the resource list.
2. Add a Key Press, Letters, N event and include the Next Room action.

. Add a Key Press, Letters, P event and include the Previous Room action.

e

Add a Key Press, Letters, R event and include the Restart Room action.

5. Finally, add a Key Press, Letter, L event and include the Set Lives action. Set New Lives
to 1 and enable the Relative option.

Now it’s finally time to create your levels. Let your imagination run wild and see what you
can come up with. It will save you time to begin by making a standard room containing only
the walls, the controller, the stationary Pop, and Katch. You can then copy this each time and
add the Biglegs and blocks for that level. Good level design is crucial for the success of the
game and more difficult than you may think. However, you'll learn a lot by just trying it for
yourself, and we'll discuss it further in Chapter 8.

Congratulations

Phew—and that’s another one done! You'll find the final version of the game in the file Games/
Chaptero6/rainbow6.gm6 on the CD. We've designed eight different levels—why not play them
and see if they give you any ideas for your own? There’s plenty of scope for expanding the fea-
tures of the game, if you want to. Here are some suggestions:

* Add other types of Biglegs that move in different directions.
* Add blocks that move around.
* Add bonus blocks that give a large number of points to the player’s score.

* Add some bad blocks that decrease the score! (Be sure that you make it obvious to the
player that this is happening—perhaps by using a new sound effect.)

Add blocks that increase or decrease the speed of Pop.

Add blocks that change the size of Pop or Katch.

In this chapter, you have learned about parents and used them in a game for the first
time. Parents are very powerful and can save you a lot of work when you are making and
changing your games. We strongly encourage you to make sure that you understand them so
that you can make full use of them in your own games.

We also introduced our game framework, which we’ll use again and refer back to in later
chapters. You saw how to deal with lives and how to use draw events and drawing actions.
Finally, you used new events and actions introducing gravity, bouncing, and alarm events into
your games.

You've already become quite experienced at Game Maker and made some enjoyable
games. However, we have a real treat for you in next chapter as we join a cute band of koala
bears who just can't help walking into dangerous objects . . .

CHAPTER 7
EEN

Maze Games: More Cute
Things in Peril

M aze games have been popular since the days of Pac-Man, and they’re another kind of
game that’s easy to make in Game Maker. In this chapter, we'll create a puzzle game where the
player must help koala bears escape from a maze full of hazardous obstacles. The focus of the
game will be on puzzles rather than action, and the levels will be designed to make the player
think carefully about the strategies they must use to avoid any unpleasant accidents. (No
animals were hurt in the making of this game.)

Designing the Game: Koalabr8

The name Koalabr8 is a play on the word “Collaborate” with a bit of text-speak thrown in for
good measure. This is because the puzzle of the game is based on the idea of controlling many
koalas at the same time. So, for example, when you press the up key, all the koalas in your
team will move up together. If you imagine trying to steer several koalas through a minefield
in this way, then you'll get a sense of the kind of challenge we’re aiming for (see Figure 7-1).
Anyway, here’s the full description of the game:

A colony of koala bears have been captured by the evil Dr. Bruce for use in his abominable
experiments. The koalas manage to escape from their cages only to find that the doctor has
implanted some kind of mind control device in their brains. The only way they can overpower
the controlling effect is to combine their thoughts and all perform the same actions at once. The
koalas must work together to find their way past the many dangers in the doctor's laboratory
and escape to freedom.

The arrow keys will simultaneously move all of the bears on a level, except bears whose
paths are blocked by a wall or another bear. Each level will be a hazardous maze that is com-
pleted by getting all of the koalas to an exit. However, if a koala touches a dangerous hazard on
the way, then he dies and the level must be replayed. The game will contain a number of fatal
and nonfatal hazards shown in the following feature list:

e Fatal hazards
e Explosive TNT

* Moving circular saws

127

128 CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

* Nonfatal hazards
* Red exits—Allow any number of koalas to exit the level
¢ Blue exits—Allow a single koala to exit the level
e Locks—Block the path of koalas (red, blue, and green)
e Switches—Open locked passageways (normal, timed, and pressure)

* Boulders—Can be pushed by koalas and destroy other hazards

Avoid the saws

Resaved:

Figure 7-1. Here'’s a typical level in the Koalabr8 game.

As always, you'll find all the resources for this game in the Resources/Chaptero7 folder on
the CD.

The Basic Maze

We'll start by making a basic maze and getting a koala to walk around it. This same technique
can be used for making any kind of maze game, so feel free to copy it for your own projects.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

The Game Framework

This game will use the same basic framework as we made in the previous chapter. This con-
sists of a front-end with buttons to start a new game, load a saved game, show help, and quit
the game, as well as a completion screen that congratulates the player. However, there is no
score in this game so there will be no high-score table. The instructions that follow will show
you how to create the front-end for this game, although you might want to refer back to
Chapter 6 for a more detailed explanation. Alternatively, you can just load the completed
framework from Games/Chapter07/koalal.gmé on the CD and skip to the next section,

“A Moving Character.”

Creating the front-end:

1.

2.

ce] e8] L] E[e [©

10.

Launch Game Maker and start a new game from the File menu.

Create sprites using the following files from the Resources/Chapter07 folder on the CD:
Title.gif, Button start.gif, Button load.gif, Button help.gif, and Button quit.gif.
Remember to name them appropriately.

Create a background using the file Background. bmp.
Create sounds using the files Music.mp3 and Click.wav.

Create a title object using the title sprite. Add an Other, Game Start event and include
a Play Sound action, with Loop set to true.

Create a start button object using the start sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to move to
the next room.

Create a load button object using the load sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to load the
game (use the default file name).

Create a help button object using the help sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to show the
game information.

Create a quit button object using the quit sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to end
the game.

Create a room using the background, and place the title and four button objects in it so
that it looks like Figure 7-2.

129

130 CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Figure 7-2. The finished front-end for Koalabr8 should look something like this.

Now follow these instructions to create the completion screen. Refer to Chapter 6 for a
more detailed explanation.
Creating the completion screen:

1. Create a sprite using the file Congratulation.gif.

@ 2. Create a new object using this sprite. Add a Create event and include a Set Alarm
action to set Alarm 0 using 120 Steps.

3. Add an Alarm, Alarm 0 event and include an action to move to the front-end room.
4.

Create a completion room using the background and place an instance of the congrat-
ulations object in it.

We also need to create the game information and change some of Game Maker’s default
settings for the game.
Changing the game settings:

1. Double-click Game Information near the bottom of the resource list and create a short
help text based on the game’s description.

2. Double-click Global Game Settings at the bottom of the resource list.

3. Switch to the Other tab and disable the two options Let <Esc> end the game and Let
<F5> save the game and <F6> load a game as we handle this ourselves.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

That completes our game framework for Koalabr8, which can also be loaded from the file
Games/Chapter07/koalal.gmé on the CD.

Caution Beware of disabling the Let <Esc> end the game option and forgetting to include your own
method for quitting your game (using the End the Game action). If this happens, you'll need to press
Ctrl+Alt+Delete to bring up the Task Manager and end the task from the Applications list. This will end
the game and return you to Game Maker.

A Moving Character

The basis of every maze game is a character that moves around walled corridors, so we will
begin by creating a wall object.

Creating the wall object:

1. Create a sprite called spr wall using the file Wall.gif. Disable the Transparent option,
as our wall is just one large solid block.

2. Create a new object called obj wall using this sprite and enable the Solid option.

You might be wondering why we are using an ugly black square for our walls. Don’t worry;
we'll transform it into something that looks much nicer when we learn how to use tiles later on
in the chapter.

Next we need to create a character, which in this case is a koala bear. We'll use five differ-
ent sprites for the koala: four animations for walking in each of the four directions and
another sprite for when koalas are standing still.

Creating the koala sprites:

1. Create a sprite called spr koala left using the file koala left.gif and enable the
Smooth edges option.

2. Create sprites in the same way using the files koala right.gif, koala up.gif,
koala down.gif, and koala stand.gif.

Now we can create our koala object and give it actions that allow the player to move it
around the screen. You can probably work out how to do this yourself by now, using either
Jump or Move actions in a similar way to one of the previous games. You may even like to have
a try for yourself before continuing, but you'll actually find that it’s very tricky to move a char-
acter through a maze using just these actions. This is because the sprites of both the walls and
koalas are exactly 40X40 pixels, so all the corridors are only just big enough for the koalas to
walk down. You'll see the problem if you imagine running through a maze with your arms fully
stretched out, where the width of the corridors is exactly the same as your arm span! Bumping
into walls and struggling to change direction in corridors soon removes all feeling of control
and the game stops being fun.

131

132

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Fortunately, Game Maker comes to the rescue with the Check Grid action. This condi-
tional action allows us to test for when a koala is exactly lined up with the corridors. This
means we can ignore the player’s badly timed key presses (that normally cause the koala to
walk into walls) and wait until Game Maker knows the koala is in exactly the right place. Only
then do we let the player stop or turn their character, so that the koalas end up gliding grace-
fully along the corridors with no fuss at all.

In addition to checking that koalas are aligned correctly, we will check that there is
nothing blocking their way before even starting to move. This results in a reliable control sys-
tem that feels slick to the player and is a solid basis for any kind of maze game you might be
making. Follow these steps and you'll see what we mean.

Creating the koala object:

1.

2.

Create a new object called obj koala using the standing koala sprite. Set the object’s
Parent to be the wall object—this may sound odd, but all will be explained in the fol-
lowing steps.

Add a Keyboard, <Left> event and include the Check Grid action (control tab). Set
both Snap hor (horizontal snap) and Snap vert (vertical snap) to 40 to indicate a grid
size of 40X40 pixels. Also enable the NOT option so that the event checks for koalas
not being aligned with the grid. The form should look like Figure 7-3.

Applies to

&) Self
) Other
) Dbject:

zhap hor; i 40 |

zhap verk: I 40 |

[“IHOT

o

Figure 7-3. Check whether the instance is not aligned with the grid.

. Include the Exit Event action. This action stops any more actions from being

performed in the Actions list. We have put it underneath our Check Grid condition
so that none of the following actions are performed when the koala is not aligned
with the grid.

. Include the Check Object action. Indicate the wall object and enable the NOT option.

Set X to -40 and Y to 0 and then enable the Relative option so that it checks that there
are no wall objects one grid square to the left of the koala.

o >

ELZE

PE® 4 @

o/ EH

-
[y

—h
=4

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Include the Start Block action followed by the Move Fixed action. Select the left arrow
and set Speed to 5 (this speed must divide exactly into the grid size of 40; otherwise the
koalas will not stop on each grid square).

Include the Change Sprite action and indicate the left-facing koala sprite. Set Subimage
to -1 so that the animation keeps playing despite the sprite being changed.

Those are all the actions we need to move the koala, so include an End Block action.

However, if there is a wall in the way, then we must stop the koala from moving. We've
already checked for walls not being present using the Check Object action, so includ-
ing an Else action will allow us to define what should happen when a wall is present.
Include the Else followed by a new Start Block action.

Include the Move Fixed action, select the middle square, and set Speed to 0.

Include the Change Sprite action using the standing sprite with a Subimage of - 1.

. Finally, include the End Block action. The actions should now look like Figure 7-4.

. Now repeat steps 2-11 to create similar rules for the Right, Up, and Down arrow keys.

Make sure you choose the correct direction for each Move Fixed action, the correct
sprite for each Change Sprite action, and the correct X and Y values for each Check
Object action. When you're making the up and down rules, remember that y increases
as you move down the screen.

If instance is aligned with grid
Exit this event

@ If there iz an object at a pozition
ey Stanrt of & block
Start moving in a direction
|§| Change sprite into spr_koala_left
&7 Endaf ablack

Elze

ey Stanrt of & block

Start moving in a direction

|§| Change sprite into gpr_koala_stand
&7 Endaf ablack

Figure 7-4. These are the actions for moving the koala to the left. Note that the first
condition has its NOT property set, so it checks for when the instance is not aligned
with the grid.

Before continuing, check through your actions and make sure that you can logically
follow what they do.

The Keyboard actions start the bear moving if there isn’t a wall in the way, but we haven’t
added any actions to stop the bear yet. This will happen automatically if the player keeps their
finger on one of the arrow keys, as the actions in the Keyboard events will eventually detect a
wall and stop. However, the bear also needs to come to a halt if the player stops pressing any

133

134

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

arrow keys. If you're thinking that we need a <No Key> event, then you're on the right track,
but if we stopped bears moving in a <No Key> event, then what would happen if the player
was pressing another key such as the spacebar? The spacebar isn’t used in this game, but it’s
still a key—so the <No Key> event would never be called and the koala would never stop!

Instead of using a <No Key> event, we're going to use a Begin Step event. This will keep
checking if the bear has reached the next grid square, and stop it when it does. We need to use
a Begin Step rather than any other kind of Step event, because the Begin part means that the
actions will be called at the beginning of each step—before the Keyboard events. Therefore,
we can stop the bear moving in Begin Step and start it again in <Left> if the player is pressing
the Left key. If we used a Step or End Step, then these events would happen the other way
around: <Left> would start the bear moving and Step would stop it again—canceling the effect
of the pressing the key. Once you've added the actions that follow, try changing the Begin Step
event to a <No Key> or a normal Step event and seeing what effect it has on the game.

Adding a Begin Step event to the koala object:

1. Add a Step, Begin Step event to the koala object and include the Check Grid action.

Set Snap hor to 40 and Snap vert to 40, but this time leave NOT disabled.

& 2. Include a Start Block action followed by a Move Fixed action. Set Speed to 0 and select
the center square to stop the koala moving.
T

IEI 3. Include a Change Sprite action, indicating the standing koala sprite with Subimage set

to -1.

<7 4 Include an End Block action and close the koala object’s properties.

Caution When setting a Move Fixed action with a speed of 0, you must also select the center square of
the direction grid. If no direction square is selected at all, then the action is ignored!

Okay, hopefully that makes sense so far, but we still haven’t explained why we made the
wall object a parent of the koala. While this may be against the laws of nature, it's not against
the laws of Game Maker, and it’s actually saved us a lot of work. Koalas need to stop for both
walls and other koalas so we could add extra actions to check for koalas in the same way we
did earlier. However, this happens automatically when we make walls a parent of koalas, as
Game Maker now treats koalas as a special kind of wall!

Before we can test our work, there is something we need to fix. When we were making the
front-end we indicated that pressing the Esc key should not automatically end the game. How-
ever, we need some way of quitting a level once it is running, so we’ll use a controller object to
take us back to the front-end when the Esc key is pressed.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Creating the controller object:
1. Create a new object called obj controller and leave the sprite as <no sprite>.

2. Add a Key Press, Others, <Escape> key event. Include the Different Room action and
indicate the front-end room.

To test our basic maze game system, we'll need to create a test level by adding a new room
between the front-end and closing rooms.
Creating a test room:

1. Right-click the completion room in the resource list and select Insert Room from the
pop-up menu. This will insert the new room between the two existing rooms.

2. Switch to the settings tab and give the room an appropriate name and caption.
3. Switch to the backgrounds tab and give the room the background.
4. Set the Snap X and Snap Y on the toolbar to the correct cell size of 40 pixels.

5. Select the objects tab and create a maze out of instances of the wall object. Leave the
top row free, as we'll need this space for displaying other game information later on.
Place three or four instances of the koala object in the maze and put one instance of
the controller object in the top-left corner of the room. The room should then look
something like Figure 7-5.

[Room

v () =120 ¢
backgrounds views

cbiects | seltings | tiles |

Object to add with left mouse:

obi_contraller éL

Left mouse button = add
+2dlts = ne snap
+ = 5hifts = mulnpls
+2Chi= = move

Right mouse button = delete
Syt = delste ol
+20hT= = popup menu

Delete underlying

Figure 7-5. Here's our first maze.

135

136

N

JEE P

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Save your work and run the game to test it. Check that the koalas don’t get stuck walking
around and that the animations play correctly. Also notice how the koalas react when they
bump into each another. If you need it, you'll find this version of the game in the file
Games/Chapter07/koala2.gmé on the CD.

Save the Koala

Most of what we have done so far could be used for any kind of maze game, but now we’ll
begin adding features specific to the Koalabr8 game design. The aim of each level is to get all
the koalas out alive, so in this section we'll add exits and check whether all koalas have been
rescued before moving on to the next level.

We'll begin by creating objects for the two different kinds of exits: one that can be used by
any number of koalas to escape, and one that is destroyed after being used by just a single
koala. When a koala collides with an exit, we know it has escaped the level and so we can
destroy the koala instance. We'll use Game Maker’s built-in mechanism for controlling the
player’s lives to indicate how many koalas have been saved in each level.

Creating the exit objects:

1. Create sprites called spr _exitland spr exit2 using Exit1.gif and Exit2.gif and
enable the Smooth edges option for them both.

. Create an object called obj exit1, and give it the first exit sprite and a Depth of 10.
We only want the koala to disappear when it’s completely on top of the exit, so add a
Collision event with the koala object and include a Check Grid conditional action.
Select Other from Applies to (the koala) and set Snap hor and Snap vert to 40.

3. Include a Start Block action.

4. Include a Destroy Instance action and select Other from Applies to (the koala).

5. Include a Set Lives action with New Lives set to 1 and the Relative option enabled.
6. Finally, include an End Block action and close the properties form.

7. Now create another exit object in exactly the same way using the sprite for exit2. The
only difference is that you need to include an additional Destroy Instance action after
step 4 with Applies to set to Self (the exit).

We'll use the controller object to check when all koalas have been rescued. It will also
display the rescued koalas along the top of the screen using the Draw Lives action.
Adding events to handle rescued koalas in the controller object:

1. Create a sprite called spr rescued using Rescued.gif and enable the Smooth edges
option.

2. Reopen the properties form for the controller object by double-clicking it in the
resource list.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

3. Add a Create event and include the Set Lives action with New Lives set to 0. We're
using lives to represent rescued koalas—so the lives need to start at 0.

. Add a new Step, Step event and include the Test Instance Count action. Set Object to
the koala object and Number to 0. When there are no koala instances left, then the
player must have completed the level.

@ [«
=Y

5. Include the Start Block action followed by the Sleep action. Set Milliseconds to 2000
(2 seconds).

>

Iz

. Include the Next Room action and set Transition to Create from center (or any other
one that takes your fancy).

N

7. Include the End Block action to complete the actions for this event.

. Add a new Draw event. Switch to the draw tab and include the Draw Sprite action. Set
Sprite to the rescued sprite, X to 10, and Y to 0. Leave the Relative option disabled, as
we want this sprite to be drawn in the top left of the screen.

9. Include the Draw Life Images action with Image set to the standing koala sprite, X to
150, and Y to 0. This will draw the sprite once for each of the player’s lives (saved
koalas).

€ @4

Caution Draw actions all have a light yellow background and can only be used in Draw events. If you
put them in a different event, then they are ignored.

Now add some exits to your test room and give it a quick play to make sure they are
working correctly. You might also want to add a second test room (remember that you can
duplicate rooms). You'll find the current version in Games/Chapter07/koala3.gmé6 on the CD.

Creating Hazards

Our maze is rather dull at the moment, so it’s time to create some challenges by making it a lot
more dangerous for the koalas. We'll start by adding TNT that blows koalas off the level if they
touch it and restarts the level. This may sound like an easy hazard to avoid, but carefully posi-
tioned TNT can present quite a challenge when you’re controlling several koalas at once!

We'll begin by creating a dead koala (how often do you get to say that?). Dead koalas will
fly off the screen in an amusing fashion—nothing too gory, as we want to keep this a family
game. We'll do this using Game Maker’s gravity action, as that will do most of the work for us
and make the movement look realistic.

137

138 CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Creating the dead koala object:
1. Create a sprite called spr koala dead using Koala dead.gif and enable Smooth edges.

2. Create a new object called obj koala dead using this sprite. Give it a Depth of -10 to
make sure it appears in front of all other objects.

. Add a Create event and include the Move Free action. Set Direction to 80 and Speed
to 15.

4. Include the Set Gravity action with Direction set to 270 (downward) and Gravity set
to 2.

e ER

5. Add an Other, Outside room event and include the Sleep action. Set Milliseconds to
1000.

z

. Include the Restart Room action with Transition left as <no effect>. It would soon
annoy the player to have to wait for a transition to restart the level each time.

[=2]

Next we'll create our TNT object. It is a very simple object that just sits there and turns
koalas into dead koalas when they collide with it.

Creating the TNT object:
1. Create a sprite called spr TNT using TNT.gif and enable Smooth edges.
2. Create a new object called obj TNT using this sprite.

3. Add a Collision event with the koala object. Include the Change Instance action and
select Other from Applies to, in order to change the koala. Set Change into to the dead
koala object and set Perform events to yes.

We’ve now actually created a bug (an unintentional error) in our game. Remember that
the controller object moves to the next room when there are no koalas left on the level—
assuming that the player must have rescued them all. However, if the last koala is killed by
TNT, then there will also be no koalas left on the level—but the player has failed! Conse-
quently, we must alter the controller object so that it also checks that there are no dead koalas
before moving to the next level.

Editing the controller object to fix the dead koala bug:
1. Double-click the controller object in the resource list and select the Step event.

2. At the top of the action list, include another Test Instance Count action and set Object
to the dead koala. As this appears directly above the old check for koalas, the block of
actions will only be performed if both conditions are true.

Test this out by adding some TNT to your levels. It’s actually possible to build very difficult
levels just using TNT. The level, shown in Figure 7-6, looks almost impossible to solve, but it is
solvable once you work out how to use the extra wall piece on the left. It’s designing puzzles
like this that will make this game interesting.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Change the orientation

Resaued:

Figure 7-6. This is a surprisingly difficult maze level.

TNT is fun, but moving hazards should add an even greater challenge, so we're going to
create two kinds of circular saws. One will move vertically and the other will move horizon-
tally, but both will leave koalas wishing they had stayed in bed!

Creating the saw objects:

1.

] B

B

Create sprites called spr_saw_horizontal and spr_saw vertical using
Saw_horizontal.gif and Saw vertical.gif. Enable the Smooth edges
option for both.

. Create an object called obj saw horizontal and give it the horizontal sprite. Add a

Create event and include the Move Fixed action. Select the right arrow and set Speed
to 4. This is slightly slower than the speed of the koala to give the player a chance to
escape.

Add a Collision event with the wall object and include the Reverse Horizontal action.

. Add a Collision event with the koala object. Include the Change Instance action and

select Other from Applies to, in order to change the koala. Set Change into to the dead
koala object and set Perform events to yes.

Create an object called obj saw vertical and give it the vertical sprite. Add a Create
event and include the Move Fixed action. Select the down arrow and set Speed to 4.

. Add a Collision event with the wall and include the Reverse Vertical action.

Finally add a Collision event with the koala object. Include the Change Instance
action and select Other from Applies to. Set Change into to the dead koala object
and set Perform events to yes.

139

140

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

At this point, you might be wondering why having the wall as a parent doesn’t mess things
up for the koala’s collisions with saws. After all, if koalas are a “special kind of wall,” then why
don’t the saws just turn themselves around when they collide with koalas? Fortunately Game
Maker automatically chooses the most specific collision event and ignores the other (a koala is
a koala first and only a wall second). However, if you remove the collision event between the
saw and the koala, then saws will start treating koalas as if they were walls again!

Create some new levels using the moving saws. You might also want to add a cheat in the
controller object, so that pressing the N key moves you to the next room and pressing the P
key moves you to the previous room. You should know how to do this by now. You'll find the
current version in Games/Chapter07/koala4.gm6 on the CD.

Tiles

The walls of our maze need brightening up a bit, and we’re going to do this by using tiles. Tiles
work by creating a new background resource that consists of a number of small, identically
sized images (40X40 pixels in our case). This is called a tile set, and we've created one that con-
tains all the various combinations of wall connections that are needed to draw a maze (see
Figure 7-7).

Figure 7-7. This tile set contains 16 wall segments.

Creating the tile set:

1. Create a new background called back tiles usingthe fileWall tiles.bmp. Enable the
Transparent option so that the green areas appear transparent.

2. Enable the Use as tile set option. The properties form will then become larger to dis-
play all the properties of a tile set.

3. Set Tile width and Tile height to 40 and leave the other values as 0. The image will now
show an exploded view of the tiles, as shown in Figure 7-8.

4. Close the properties form.

= Background Properties
MName: |back_tiles
B Load Background

Width: 160 Height: 160

Tranzparent
<ow Edit Background

[] Smoath edges
[] Preload texture

Tile Properties
tile: wiclth: | 40
tle height: |40

harizontal offset: U—|
vertical offset |0

harizontal sep; . 0
vertical sep; |0

CHAPTER 7

MAZE GAMES: MORE CUTE THINGS IN PERIL

141

Usze as tile zet

Figure 7-8. Add the tile set to the game.

Now we can begin adding these tiles to the rooms. You might have noticed that there is a
special tab in the room properties form for this. This allows us to add tiles to the background
image of the room. However, these tiles have no behavior and instances won't react to them,
so how do we stop the koalas from moving through the walls? The answer is that we use the
wall object we've already created and place instances of this object on top of the tiles. Once
this is done, we make the wall object invisible, so that the player doesn't see the ugly walls in
the game. When the koalas walk around, they will still be blocked by the invisible wall
instances, but the player only sees the nice-looking tiles.

Adding tiles to your rooms:

1. Double-click the first room in the resource list and use the right mouse button to
delete all of the wall instances in the room.

2. Click the tiles tab. Use the menu halfway down on the left to select the background
with the tiles. Once this is done, the tiles will be displayed in the left top.

3. Click on one of the tile images to select a particular tile, and it will become outlined.
Now you can place and remove copies of that tile using the left and right mouse but-
tons in the same way as for instances. You can also hold the Shift key to add multiple
copies.

4. Select and place tiles in order to create a maze that looks like the one in Figure 7-9.

5. Select the objects tab and carefully place instances of the wall object on top of the
wall tiles.

6. Repeat the process for the other rooms.

142

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

S Room Properties

v) =188 5 snapx 40 [snepy[e0 ||[H] | 0 -

| backgrounds views | | 1 | I

| objects | seftings | tles

7y

iback_tiles =

Delete underlying

Current Tile Laper:

Layer 1000000 b

400 yi 120

Figure 7-9. Add tiles to the room.

Tip When creating levels, you may find it helpful to hide tiles or objects using the magnifying glass menu
in the toolbar. This allows you to temporarily hide all the tiles or objects in the room. However, you cannot
hide objects while the objects tab is selected or hide tiles while the tiles tab is selected.

Finally we must make the wall object invisible so that the tiles can be seen instead.

Making the wall object invisible:
1. Double-click the wall object in the resource list to open the properties form.
2. Disable the Visible option to make it invisible.

Test the game again to make sure that the tiles are displayed correctly and koalas cannot
walk through walls. You'll find the current version in the file Games/Chapter07/koalas.gmé on
the CD.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL 143

Adding Additional Hazards

You can already build some interesting levels using just the TNT and the saws, but we're going
to add a couple of other features to add a bit more variation.

Locks and Switches

Locks block the path of koalas in the maze and open only when the corresponding switch is
pressed. We'll create three different types of locks: the blue lock will disappear forever once its
switch is activated, the yellow lock will reappear 5 seconds later, and the red lock will only stay
open while the switch continues to be pressed. So in this final case one koala must keep the
lock open for another one to pass.

We'll begin with the blue switch since this is the simplest to do. We'll use two objects: one
for the lock, and one for the switch. The switch sprite will contain two subimages showing the
switch in closed and open positions, and we’ll use actions in the switch object to display the
correct one.

Creating the blue lock and switch objects:

1. Create sprites called spr_lock blue and spr switch blue using Lock blue.gif and
Switch blue.gif. Enable the Smooth edges option for them both. Notice how the
switch sprite has two frames of animation showing the switch in different positions.

2. Create a new object called obj lock blue and give it the blue lock sprite. Enable the
Solid option. Set Parent to the wall object so that it behaves like a wall (blocking
koalas).

3. Create a new object called obj switch blue and give it the blue switch sprite. Set
Depth to 10 to make sure that it appears behind other objects.

IEI 4. Add a Create event and include a Change Sprite action. Select the blue switch sprite
and set both Subimage and Speed to 0. This will display the first subimage and will
stop the sprite from animating.

5. Add a Collision event with the koala object and include the Destroy Instance action.
Select Object from Applies to and select obj lock blue from the menu.

|§| 6. Include the Change Sprite action, selecting spr switch blue with a Subimage of 1 and
a Speed of 0.

The other switches are a bit more complicated as they both involve temporarily removing
the locks. The trick here is to move the lock to a place just outside the room and set an alarm
clock. When the time is up, we can use the Jump to Start action to bring the lock back into
play. However, we will need to make sure that there is nothing in the way when we bring it
back and set the alarm clock to try again later if there is.

144 CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Creating the yellow and red lock and switch objects:

1.

w

ELSE

@R

12.

Create sprites called spr lock yellowand spr switch yellowusing Lock yellow.gif
and Switch yellow.gif. Enable the Smooth edges option for them both.

Create a new object called obj lock yellow and give it the yellow lock sprite. Enable
the Solid option. Set Parent to the wall object.

. Add an Alarm, Alarm 0 event and include the Check Empty action. Set X to xstart, Y

to ystart, and Objects to all. Using the variables xstart and ystart will check that
there are no collisions at the start position of the lock.

. Switch to the move tab and include the Jump to Start action.

Include the Else action followed by a Set Alarm action. Set Number of Steps to 2 so
that the lock tries again quite quickly.

Create a new object called obj switch yellow and give it the yellow switch sprite. Set
Depth to 10 to make sure that it appears behind other objects.

. Add a Create event and include a Change Sprite action. Select spr switch yellowand

set Subimage and Speed to 0.

. Add a Collision event with the koala object and include the Jump to Position action.

Select Object from Applies to and select obj lock yellowfrom the menu. Set X to 1000
and Y to 0 to make it move way off the screen.

. Add a Set Alarm action with 150 Steps (5 seconds). Select Object from Applies to and

select obj lock yellow from the menu.

. Finally add the Change Sprite action, selecting spr switch yellow with a Subimage of

1 and a Speed of 0.

. Reopen the properties form for the yellow lock and select the Alarm 0 event. Include a

Change Sprite action at the top of the list of actions. Select Object from Applies to and
select obj switch yellow from the menu. Select spr switch yellow and set Subimage
and Speed to 0. This will return the switch to the normal position.

Create the red lock and the red switch in the same way. However, this time set the
alarm to only 2 Steps so that it resets as soon as the koala moves away from the switch.

If you try using them in your rooms, you'll see that you can use switches to create some
very interesting and tricky levels.

A Detonator

This one’s going to be very easy. The detonator object will blow up all the TNT on a level—
making the koala’s life much easier. As with the switches, we’ll use a sprite that consists of two
subimages to show the detonator before and after the explosions.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL 145

Creating the detonator object:

1. Create a sprite called spr detonator using Detonator.gif and enable the Smooth
edges option.

2. Create a new object called obj detonator and give it the detonator sprite. Set the
Depth to 10.

El 3. Add a Create event and include the Change Sprite action. Select the detonator sprite
and set Subimage and Speed to 0.

4. Add a Collision event with the koala object and include a Destroy Instance action.
Select Object from Applies to and select obj TNT from the menu.

IEI 5. Include a Change Sprite action. Select spr_detonator, and then set Subimage to 1 and
Speed to 0.

Detonators can potentially make your levels very easy, so make sure you put them in
locations that are very difficult to reach!

Rocks

Rocks can be pushed around by koalas, as long as there is free space to push them into. Rocks
will block moving saws and cause TNT to explode when they are pushed onto it—harmlessly
destroying both the rock and TNT. When a rock is pushed onto a switch or detonator, it will
also be destroyed, allowing the player to remove switches without pressing them.

Creating the basic rock object:
1. Create a sprite called spr rock using Rock.gif and enable the Smooth edges option.

2. Create a new object called obj rock and give it the rock sprite. Enable the Solid option
and set Depth to -5 so that it appears in front of most objects but behind the dead
koala object.

To push the rock in the right direction, we need to know which direction the koala was
moving in when it collided with the rock. We can find this out using the variables hspeed (the
current horizontal speed of an instance) and vspeed (the vertical speed of an instance). The
koala will be the other object involved in the collision, so its speed is indicated by other.hspeed
and other.vspeed. The koala moves with a speed of 5 and the cell size is 40, so multiplying the
koalas’ horizontal speed by 8 will give us the rock’s new x-position (5 X 8 = 40). Likewise, mul-
tiplying the koala’s vertical position by 8 will give us the rock’s new y-position. Therefore, we
can use this calculation to verify that there is nothing in the way of the new position and move
there.

146

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Adding actions to the rock object to allow koalas to push it around:
1. Add a Collision event with the koala object.

@ 2. Include the Check Object action and indicate the wall object. Set X to 8*other.hspeed
and Y to 8*other.vspeed. Enable both the Relative and NOT options.

@ 3. Add a similar Check Object action for the rock object using all the same settings.

Add two more similar Check Object actions for the horizontal and vertical saw objects
using all the same settings.

O

5. Finally, include a Jump to Position action. Set X to 8*other.hspeed and Y to

® H * . .
8*other.vspeed, and enable the Relative option.

This will do the trick. You might want to add some rocks to your levels and push them
around to check that they work correctly. Next we need to make the rock destroy TNT,
switches, and the detonator.

Adding actions to the rock object to make it destroy things:

1. Add a Collision event with the TNT object and include the Destroy Instance action
with default settings (to destroy the rock). Include another Destroy Instance action
and select Other (to destroy the TNT) from the Applies to option.

2. Add a Collision event with the detonator object and include the Destroy Instance
action. Select Other from the Applies to option (to destroy the detonator).

3. In the same way, add Collision events with the three switches and include Destroy
. :
Instance actions that apply to the switches.

We also need to make sure that the saws do not move through rocks.

Adding events to the saw objects to make them turn for rocks:
1. Double-click the horizontal saw object in the resource list to open its properties form.
|§| 2. Add a Collision event with the rock object and include the Reverse Horizontal action.
3. Close the properties form.
4. Double-click the vertical saw object in the resource list to open its properties form.
@ 5. Add a Collision event with the rock object and include the Reverse Vertical action.
6. Close the properties form.

Now go ahead and make levels using every combination of locks, switches, detonators,
and rocks you can think of. You can create an almost endless combination of different chal-
lenges. For example, Figure 7-10 shows a level in which the koalas must move the rocks
around very carefully if they are to reach the exit (it is solvable). You can find the current
version in the file Games/Chapter07/koala6.gm6 on the CD.

CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL 147

Push the rocks away

Resaved:

=
£
£
- P
£
»
- P
L
L

Figure 7-10. You can make quite difficult levels just using rocks.

Finishing the Game

That'’s just about it, but as always there are some loose ends we can tie up to make the game a
bit more presentable and user-friendly.

Now that we have so many features, it is possible to get into a situation on a level where
the level can no longer be completed. Consequently, we need to give the player a way to
restart the level when this happens. We'll add a button to do this in each room and allow
them to use the R key as a shortcut for restarting the level as well.

Creating a restart button object:

1. Create a sprite called spr_restart usingRestart.gif.

2. Create a new object called obj restart and give it the restart sprite. Add a new Mouse,
Left Pressed event. Include the Play Sound action using the click sound and follow it
with the Restart Room action.

3. Add a Key Press, Letters, R event and include the Restart Room action.
4. Add an instance of this new object into the top-right corner of every level room.

Next we'll add a mechanism to save the game. Rather than letting the player do this, we'll
get the controller object to automatically save the game at the start of each level.

148 CHAPTER 7 © MAZE GAMES: MORE CUTE THINGS IN PERIL

Save the game in the controller object:
1. Double-click the controller object in the resource list to open its properties form.
2. Add an Other, Room Start event and include the Save Game action to save the game.

Finally, we should add some sound effects. You should be able to do this by yourself, so
here is a list of the ones that are required.

Adding sound effect to objects:

1. Explosion.wav needs to play in the Collision event between the TNT and the koala and
the Destroy event of the TNT.

2. Saw.wav needs to play in the Collision events between both the saws and the koala.

3. Saved.wav needs to play in the Collision event between the two exit objects and the
koala. Put it inside the block, so that it is only played when the koala is removed.

4. Rock.wav needs to play in the Collision event between the rock objects and the koala.
However, you only want to play it when the rock actually moves, so add Start Block
and End Block around the Jump to Position action and include the Play Sound action
within it.

You might also want to attempt to add a sound for pressing the switches and opening
locks. However, this is a lot more difficult than it seems because Collision events happen con-
stantly while the koala stands on a switch. So if you play a sound in this event, it will also play
continuously in a very annoying way! There are several (complex) ways of working around
this, and we have provided a sound effect if you fancy the challenge.

Finally, you might want to update the game information to include details about the dif-
ferent hazards—although you might want to let the players find out for themselves!

Congratulations

We hope you enjoyed creating Koalabr8 and that you've had fun designing challenging levels.
You may get some more ideas by playing ours from Games/Chapter06/koala7.gmé6 on the CD.
The great thing about pu