
www.apress.com

Jacob Habgood
and Mark Overmars
Foreword by Phil Wilson,
the producer of the highly anticipated Xbox 360™ game Crackdown.

The

Game Maker’s
Apprentice
Game Development
for Beginners

ISBN 1-59059-615-3

9 781590 596159

53999

6 89253 59615 9

Create PC games the easy way using
Game Maker’s simple drag-and-drop interface

Learn essential game design theory

Make your games more fun!

The Game Maker’s Apprentice Game Development for Beginners

Habgood
Overmars

US $39.99

Shelve in Game Programming

User level: Beginner

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

Join online discussions:

TECHNOLOGY IN ACTION™

this print for content only—size & color not accurate 7" x 9.25" spine = 18.2 mm 336 page count

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

The Gam
e M

aker’s Apprentice

MINIMUM HARDWARE REQUIREMENTS

PC Running Windows 98SE or Above
CD or DVD-ROM Drive
32MB DirectX-Compatible Graphics Card
DirectX-Compatible Sound Card
DirectX 8 or Above

If you want to learn the craft of making computer games, then you’ve come to the right
place. This book, and companion CD, provide all you need to create your own games

for Microsoft Windows using Game Maker. It introduces beginners of all ages to the art of
creating computer games. All the graphics, sound effects, and music you’ll need are
included to put together no less than nine professional-looking games!

Game Maker allows you to begin creating games almost immediately, using a simple
drag-and-drop system that makes learning to program much easier than traditional pro-
gramming languages. This book brings together the expertise of Game Maker’s creator with
a professional game developer to present a complete guide to designing and programming
games that are fun to play.

The authors’ passion and enthusiasm for game development really shine
through in The Game Maker’s Apprentice, and you’ll soon discover that the
process of creating games can be just as fun as actually playing them!

IN
CL

UD
ES

 C
D

W
IT

H
GA

M
E

M
AK

ER
 S

OF
TW

AR
E

AN
D

EV
ER

YT
HI

NG
 Y

OU
 N

EE
D

TO
 C

RE
AT

E 9
 G

AM
ES

!

IN
CL

UD
ES

 C
D

W
IT

H
GA

M
E

M
AK

ER
 S

OF
TW

AR
E

AN
D

EV
ER

YT
HI

NG
 Y

OU
 N

EE
D

TO
 C

RE
AT

E 9
 G

AM
ES

!

INCLUDES CDINCLUDES CD

w w w . s h a r e x x x . n e t - f r e e b o o k s & m a g a z i n e s

Jacob Habgood
Mark Overmars

The Game Maker’s
Apprentice
Game Development for Beginners

6153FM.qxd 3/25/06 3:50 PM Page i

The Game Maker’s Apprentice: Game Development for Beginners

Copyright © 2006 by Jacob Habgood and Mark Overmars

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

In purchasing this book, the authors and publisher grant you permission to use the electronic resources
from the accompanying CD for commercial or noncommercial use in your own games made with Game
Maker. However, redistribution of the original games or their resources is prohibited and the authors
retain full copyright of all the original game concepts and the intellectual property associated with them.

ISBN-13 (pbk): 978-1-59059-615-9

ISBN-10 (pbk): 1-59059-615-3

Printed and bound in China 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills
Development Editor: Adam Thomas
Technical Reviewer/Additional Material: Sean Davies
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole LeClerc
Copy Editor: Liz Welch
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Dina Quan
Proofreader: Lori Bring
Indexer: Present Day Indexing
Artist: Kinetic Publishing Services, LLC
Illustrations and Cover Art: Kevin Crossley
Game Artists: Kevin Crossley, Matty Splatt and Ari Feldman
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

6153FM.qxd 3/27/06 3:29 PM Page ii

To halcyon days
with a frog,

a parrot,
and a talented bunch of gremlins.

6153FM.qxd 3/25/06 3:50 PM Page iii

Contents at a Glance

Foreword . xiv

About the Authors . xvi

About the Technical Reviewer . xvii

About the Illustrator . xviii

Acknowledgments . xix

Introduction . xx

PART 1 ■ ■ ■ Getting Started
■CHAPTER 1 Welcome to Game Maker . 3

■CHAPTER 2 Your First Game: Devilishly Easy . 9

PART 2 ■ ■ ■ Action Games
■CHAPTER 3 More Actions: A Galaxy of Possibilities . 41

■CHAPTER 4 Target the Player: It’s Fun Being Squished . 65

■CHAPTER 5 Game Design: Interactive Challenges . 85

PART 3 ■ ■ ■ Level Design
■CHAPTER 6 Inheriting Events: Mother of Pearl . 101

■CHAPTER 7 Maze Games: More Cute Things in Peril . 127

■CHAPTER 8 Game Design: Levels and Features . 149

iv

6153FM.qxd 3/25/06 3:50 PM Page iv

PART 4 ■ ■ ■ Multiplayer Games
■CHAPTER 9 Cooperative Games: Flying Planes . 169

■CHAPTER 10 Competitive Games: Playing Fair with Tanks 191

■CHAPTER 11 Game Design: Balance in Multiplayer Games 211

PART 5 ■ ■ ■ Enemies and Intelligence
■CHAPTER 12 GML: Become a Programmer . 225

■CHAPTER 13 Clever Computers: Playing Tic-Tac-Toe . 245

■CHAPTER 14 Intelligent Behavior: Animating the Dead . 259

■CHAPTER 15 Final Words . 291

■BIBLIOGRAPHY . 297

■INDEX . 299

v

6153FM.qxd 3/25/06 3:50 PM Page v

6153FM.qxd 3/25/06 3:50 PM Page vi

Contents

Foreword . xiv

About the Authors . xvi

About the Technical Reviewer . xvii

About the Illustrator . xviii

Acknowledgments . xix

Introduction . xx

PART 1 ■ ■ ■ Getting Started

■CHAPTER 1 Welcome to Game Maker . 3

Installing the Software . 3
Registration . 5

The Global User Interface . 6

Running a Game . 6

How to Get More Information . 8

What’s Next? . 8

■CHAPTER 2 Your First Game: Devilishly Easy . 9

Designing the Game: Evil Clutches . 9

Sprites . 10

Objects . 13

The Boss Object . 13

Events and Actions . 14

The Dragon Object . 18

Rooms . 20

Save and Run . 22

Instances and Objects . 24

Demons, Baby Dragons, and Fireballs . 24

The Fireball Object . 24

The Demon Object . 27

Summoning Demons . 30

The Baby Dragon Object . 31
vii

6153FM.qxd 3/25/06 3:50 PM Page vii

Backgrounds and Sounds . 33

A Background Image . 33

Background Music . 34

Sound Effects . 35

Congratulations . 36

PART 2 ■ ■ ■ Action Games

■CHAPTER 3 More Actions: A Galaxy of Possibilities 41

Designing the Game: Galactic Mail . 41

Sprites and Sounds . 42

Moons and Asteroids . 45

Flying Around . 50

Winning and Losing . 56

An Explosion . 56

Scores . 57

Levels . 58

Finishing Touches . 60

A Title Screen . 60

Winning the Game . 61

Adding Some Visual Variety . 62

Help Information . 62

Congratulations . 63

■CHAPTER 4 Target the Player: It’s Fun Being Squished 65

Designing the Game: Lazarus . 65

An Animated Character . 66

A Test Environment . 72

Falling Boxes . 73

Finishing Touches . 78

No Way Out! . 78

Adding a Goal . 79

Starting a Level . 80

Sounds, Backgrounds, and Help . 81

Levels . 82

Congratulations . 83

■CONTENTSviii

6153FM.qxd 3/25/06 3:50 PM Page viii

■CHAPTER 5 Game Design: Interactive Challenges . 85

What Makes a Good Game? . 85

Game Mechanics . 86

Interactive Challenges . 87

Game Genres . 87

Challenges . 88

Difficulty . 88

Goals . 89

Rewards . 90

Subgoals . 92

Interactivity . 92

Choices and Control . 93

Control Overload! . 93

Unfair Punishment . 94

Audio Feedback . 95

Summary . 96

PART 3 ■ ■ ■ Level Design

■CHAPTER 6 Inheriting Events: Mother of Pearl . 101

Designing the Game: Super Rainbow Reef . 101

A Game Framework . 103

The Front-End . 103

The Completion Screen . 106

Bouncing Starfish . 107

Biglegs . 113

Parent Power . 116

Lives . 117

Blocks . 120

Normal Blocks . 120

Solid Blocks . 120

Special Blocks . 121

Polishing the Game . 123

Sound Effects . 123

Saving Games and Quitting . 123

A Slower Start . 124

Creating the Levels . 125

Congratulations . 126

■CONTENTS ix

6153FM.qxd 3/25/06 3:50 PM Page ix

■CHAPTER 7 Maze Games: More Cute Things in Peril 127

Designing the Game: Koalabr8 . 127

The Basic Maze . 128

The Game Framework . 129

A Moving Character . 131

Save the Koala . 136

Creating Hazards . 137

Tiles . 140

Adding Additional Hazards . 143

Locks and Switches . 143

A Detonator . 144

Rocks . 145

Finishing the Game . 147

Congratulations . 148

■CHAPTER 8 Game Design: Levels and Features . 149

Selecting Features . 149

Pie in the Sky . 150

Do You Have That in Blue? . 151

Starting an Arms Race . 152

One-Trick Ponies . 152

Emerging with More Than You Expected . 153

Designing Levels . 154

The Game Maker’s Apprentice . 155

Learning Curves . 156

Difficulty Curves . 158

Saving the Day . 160

Applying It All . 160

Features . 160

Emerging Springs . 161

Training Missions . 161

Dividing Levels . 162

Summary . 163

■CONTENTSx

6153FM.qxd 3/25/06 3:50 PM Page x

PART 4 ■ ■ ■ Multiplayer Games

■CHAPTER 9 Cooperative Games: Flying Planes . 169

Designing the Game: Wingman Sam . 169

Variables and Properties . 170

The Illusion of Motion . 173

Flying Planes . 174

Enemies and Weapons . 176

Dealing with Damage . 179

Time Lines . 182

More Enemies . 184

End Boss . 186

Finishing Touches . 188

Congratulations . 189

■CHAPTER 10 Competitive Games: Playing Fair with Tanks 191

Designing the Game: Tank War . 191

Playing with Tanks . 192

Firing Shells . 195

Secondary Weapons . 199

Views . 205

Congratulations . 210

■CHAPTER 11 Game Design: Balance in Multiplayer Games 211

Competition and Cooperation . 211

Independent Competition . 211

Dependent Competition . 212

Independent Cooperation . 213

Dependent Cooperation . 213

Mix and Match . 213

Balanced Beginnings . 214

Equivalent Characters . 214

Balancing Differences . 214

■CONTENTS xi

6153FM.qxd 3/25/06 3:50 PM Page xi

Balanced Choice . 218

Weighting Choices . 218

Cyclic Relationships . 218

Balanced Computer Opponents . 220

Artificial Stupidity . 220

Summary . 221

PART 5 ■ ■ ■ Enemies and Intelligence

■CHAPTER 12 GML: Become a Programmer . 225

Hello World . 226

Variables . 228

Functions . 230

Conditional Statements . 232

Repeating Things . 234

Arrays . 237

Dealing with Other Instances . 239

Scripts As Functions . 240

Debugging Programs . 242

Congratulations . 244

■CHAPTER 13 Clever Computers: Playing Tic-Tac-Toe 245

Designing the Game: Tic-Tac-Toe . 245

The Playing Field . 246

Let the Computer Play . 251

A Clever Computer Opponent . 254

Adaptive Gameplay . 256

Congratulations . 257

■CHAPTER 14 Intelligent Behavior: Animating the Dead 259

Designing the Game: Pyramid Panic . 259

The Basic Framework . 260

Creating the Maze and the Explorer . 263

Expanding Our Horizons . 265

Reactive Behavior . 267

Time for Treasure! . 269

■CONTENTSxii

6153FM.qxd 3/25/06 3:50 PM Page xii

Movable Blocks . 270

Rule-Based Behavior . 271

Walking Around . 273

Moving Toward the Explorer . 275

Dealing with States . 277

Scarabs . 280

Let There Be Light . 284

Looking to the Future . 289

■CHAPTER 15 Final Words . 291

Creating Resources . 291

Artwork: The GIMP . 291

Music: Anvil Studio . 292

Sound Effects: Audacity . 294

The Game Maker Community . 294

Note to Teachers . 295

Good Luck . 296

■BIBLIOGRAPHY . 297

■INDEX . 299

■CONTENTS xiii

6153FM.qxd 3/25/06 3:50 PM Page xiii

Foreword

Way back when Mario was still a mere twinkling in Miyamoto’s eye, I was the proud owner
of a state-of-the-art Commodore 64 microcomputer. It came with a game development sys-
tem called “The Quill,” which allowed anyone to create their own text-based adventure games.
It may have been incredibly crude, but it suddenly put at my fingertips the thrill of entertain-
ing my nearest and dearest by devising “interactive challenges” of my own. Unfortunately, I
knew little about game design, and rather than easing my players into a new and alien world, I
treated them as opponents that had to be defeated before they could reach the end. Their spir-
its crushed, they left, never to return . . .

It took me years of playing a variety of good (and bad) games to eventually learn how to
treat the player to the game-playing experience that their investment of time and money
deserved. It took just hours of reading this book to wish I’d had its invaluable guidelines and
the accompanying Game Maker tool to help me take my own first steps into game develop-
ment all those years ago.

Two decades later, I now work for Real Time Worlds as the producer of Crackdown, an
imminent Xbox 360 title developed exclusively for Microsoft. Crackdown is the result of over
three years of development from a team that’s now nearly 70 strong in Dundee (Scotland),
with many more contributors across North America and Eastern Europe. This game has cost
millions of pounds to create, and already consists of over two and half million lines of program-
ming code! Blood, sweat, and tears have been poured into this title to provide cutting-edge
graphics technology, stunning art assets, and dramatic surround sound. We’ve spent days
(and nights) wrestling with new technologies to provide the player with a “playground” and
“toy set” that was previously only the stuff of dreams.

Nonetheless, once you strip away the gloss, Crackdown boils down to a handful of game-
play linchpins, or what we term the “pillars of play.” Take it from me that when charged with
building such a grand gaming monument, it is vitally important to have absolute faith in the
basic foundations! I was therefore very pleased to see that this book encourages you to iden-
tify these pillars (or game mechanics) and discover how a system of simple rules can combine
in unique and compelling ways to create a spellbinding experience.

As you progress through the book you’ll build a series of excellent games that you might
never have even dreamed you could be capable of creating right now. The instructions are
clear and concise, but also encourage you to experiment with your own designs. For example,
your version of the captivating and original Koalabr8 game (Chapter 7) will almost certainly be
a unique piece of software. The crazy devices you invent, and the way you lay out your levels,
will certainly differ from mine. Watch out for Lazarus too (Chapter 4)—it may interest you to
know that this eponymous hero first appeared in Jacob’s student portfolio, and was partly
responsible for securing his first programming job in the industry!

xiv

6153FM.qxd 3/25/06 3:50 PM Page xiv

Mark and Jacob have brought together decades of game development expertise in this
book. As well as being a professor of computing, and the creator of Game Maker, Mark first cut
his game-programming teeth creating versions of games like Super Breakout for the Atari ST.
Jacob has a string of titles to his name, and his in-depth knowledge of “the craft” consistently
yields outstanding results. Never more so was this the case than when I had the pleasure of
working with him on the team that created the PlayStation hit Hogs of War (also mentioned in
this book). Where Jacob differs from his peers is in his mastery of all four of the fundamental
game development disciplines: programming, sound, art, and, of course, design. Now, thanks
to Mark’s Game Maker software, you can find out what it feels like in their world!

One of the key messages I hope you’ll take away from this book is that there’s a world of
difference between having a great idea for a game and being a great game designer. The initial
idea is simply the seed from which the game grows, or the stone from which the pillars are
hewn. The role of a designer is to fully realize the vision: conceiving and continually refining
the various supporting mechanisms to make them mesh like the components of a Swiss time-
piece. As is repeatedly stated in these pages, there is no correct solution to game design—only
a great idea, well executed and injected with personal flair and enthusiasm. Even if you’re
struggling to pin down that idea right now, I’m sure you will have wrestled it onto the screen
and into the hands of friends and family before finishing the final chapter of The Game
Maker’s Apprentice.

Good luck!
Phil Wilson

Producer, Real Time Worlds

Crackdown

■FOREWORD xv

6153FM.qxd 3/25/06 3:50 PM Page xv

About the Authors

■JACOB HABGOOD is 30 years old and has been writing computer games since he was 10. He
wanted to be a psychologist when he grew up, but somehow he ended up with a computer
science degree and went into the games industry instead. He worked as a professional game
developer for seven years, programming console games for Gremlin Interactive and Info-
grames/Atari in the north of England. During this time he contributed to a range of successful
titles and led the programming teams on Micro Machines (PlayStation 2, Xbox, and Nintendo
GameCube) and Hogs of War (PlayStation).

Jacob is now a doctoral student at the University of Nottingham, researching the educa-
tional potential of computer games. As part of this research, Jacob runs clubs and work-
shops teaching children and teenagers how to make their own computer games and provides
free teaching resources through his website: gamelearning.net. All being well, this work will
soon earn him a Ph.D. from Nottingham’s Department of Psychology so that he can finally
consider himself grown up.

■MARK OVERMARS is a full professor in computer science at Utrecht University in the
Netherlands. There he heads the research center for Advanced Gaming and Simulation
(www.gameresearch.nl) in which researchers from different disciplines collaborate on all
aspects of gaming and simulation. One of Mark’s prime research domains is computer games.
He is also one of the founders of the Utrecht Platform for Game Education and Research
(www.upgear.nl), a collaboration of different game-related educational programs in the
Netherlands. For many years he has taught courses on computer game design at Utrecht
University, and has given lectures on game design to many types of people (high school kids,
teachers, researchers, and politicians). Mark is the author of a number of popular software
packages, in particular, the Game Maker software package used as the development tool in
this book.

xvi

6153FM.qxd 3/25/06 3:50 PM Page xvi

About the Technical Reviewer

■SEAN DAVIES is 28 years old and has been fascinated by computer games from an early age. He
grew up fairly certain that he would become a novelist—or possibly a rock star, but eventually
came to a number of important realizations:

1. He’s probably never going to be a rock star.

2. Game programming is quite cool, though.

3. Badgers are just really big weasels (the exchange rate is approximately 20 weasels to
the badger if you’re interested).

4. Any attempts to construct a serious calculus of the family Mustelidae are probably best
kept to yourself—people think you’re strange (see above).

Having made these startling realizations at such an early stage, the rest of his career path
was pretty much decided. After graduating with a degree in computer science, he joined Info-
grames in Sheffield, UK, and has worked in the games industry ever since. When Infogrames
Sheffield closed its doors in 2002, he joined Sumo Digital, where he still is today. Sean is cur-
rently Xbox platform lead on Outrun 2006: Coast to Coast, which Sumo is developing for
SEGA, and is looking forward to working on some next-generation console programming in
the near future. He currently has no intention at all of ever becoming properly grown up.

Outrun 2006: Coast to Coast

xvii

6153FM.qxd 3/25/06 3:50 PM Page xvii

About the Illustrator

The first things Kev Crossley remembers drawing as a child were some Daleks and the
Incredible Hulk, and he knew from that point on that he would grow up to be one or the other.
When Kev was five, his dad brought home the videogame Pong, and Kev has been trying to
come to grips with it ever since. Nonetheless, he has managed to get through a couple of Zelda
games and has spent many a happy hour blasting the head off one of this book’s authors with
a Rail Gun.

Kev spent some time in a university, but eventually realized that an art degree was not
going to give him access to Time Lords or gamma rays, so he decided to work in a bakery
instead. Eventually he got sick of eating coconut macaroons and biscuits and applied for a
job making videogames for a little green monster. For the next third of his life, he had a great
time producing graphics and animation for over 20 titles—some of which were quite good.

These days Kev is a concept artist at Core Design in Derby, UK, where he has occasionally
been known to hang out with women obsessed with tombs. He has also done copious
amounts of freelance illustration and writing for publishers all over the world, including a
series of instructional drawing books and sequential work for Rebellion’s sci-fi comic 2000AD.
His one regret is that he can’t ride a skateboard, because a cross between the Daleks and
Tony Hawk would be unstoppable.

xviii

6153FM.qxd 3/25/06 3:50 PM Page xviii

Acknowledgments

By rights, this book really shouldn’t exist, because it’s required far too much effort from far
too many people to make it a profitable endeavor. Nonetheless, it does exist, and as a result
there are a lot of people who need to receive our heartfelt thanks in helping us to realize this
labor of love.

First and foremost, we need to thank all those people closest to the individuals directly
involved in bringing this book into existence. Their influence may not be obvious to the
reader, but projects like this could never happen without the support and understanding of
the wives, girlfriends, and families of all the people involved in this book. In particular, Jacob
would like to thank Jenny, Fiona, Michelle, and Amelia, all of whose names should adorn the
credits of many a videogame for the sacrifices that they regularly make to indulge the creative
passions of their loved ones.

The next biggest thanks should go to Matty Splatt, who has shied away from a full billing
in the “About the” sections but did a fantastic job of bringing Koalabr8 and Pyramid Panic to
life with his comical and beautifully polished graphics. We would also like to give a special
thanks to Ari Feldman for allowing us to use and modify his game sprites for the Wingman
Sam game.

More thanks go to Jenny and Marguerite Habgood
for their grammatical critiques, and the following people
for all their comments and input into the project: Sarah
Peacock, Judy Robertson, John Sear, and Phil Wilson.
Additional thanks goes to all the staff and students at
Sheffield West City Learning Centre, who suffered the
book’s instruction in its earliest form.

Quick thanks also to everyone who enthusiastically
play-tested the games in the book, including Gail
Clipson, Fiona Crossley, Katie Fraser, Giulia Gelmini,
Jasmin Habgood, Martijn Overmars, Ronald Overmars,
and Stuart Reeves.

Finally, we would like to thank everyone at Apress
for their support, and for sticking with us even after it
became plainly obvious that both authors were far too
busy to write a book!

xix

6153FM.qxd 3/25/06 3:50 PM Page xix

Introduction

Who wouldn’t want to make computer games? It’s creative, rewarding, and these days even
pretty darn cool too. You can make them to share with your school friends, your work col-
leagues, your grandchildren, or even the entire gaming world. This book is not specifically for
the young or old, but anyone who loves computer games and wants to have a go at making
them for themselves. We’ve all painted a picture, written a story, and made a wobbly piece of
pottery at some point in our lives, so it’s now time to embrace the art form of the future and
try making computer games too.

This book provides a collection of engaging tutorials that introduce you to the Game
Maker tool and teach you how to use it. The first four parts of the book take you step by step
through seven different projects using Game Maker’s simple drag-and-drop programming sys-
tem. By the time you’ve finished making Evil Clutches, Galactic Mail, Lazarus, Super Rainbow
Reef, Koalabr8, Wingman Sam, and Tank War, you’ll have a well-rounded experience of making
games with Game Maker. Parts 2, 3, and 4 also end with game design chapters that encourage
you to stand back from your creations and consider how principles of game design can be
used to make them more fun. Moreover, we don’t just talk about it, but we provide new ver-
sions of the games with improved features so that you can experience for yourself how solid
game design can lead to good gameplay.

Game Maker provides a simple environment that allows complete beginners to quickly start
building games, using an icon-based system of events and actions (see Figure 1). This drag-and-
drop programming technique provides an easy way to learn about game development and
allows you to create complete games without going near a traditional programming language.

Figure 1. Game Maker’s simple drag-and-drop system uses iconic events and actions to program
computer games.xx

6153FM.qxd 3/25/06 3:50 PM Page xx

However, once you become more experienced, traditional languages can provide a more
powerful way to program games. Consequently, Game Maker also provides the Game Maker
Language (GML), which underpins Game Maker and makes it such a powerful tool (see
Figure 2). The last part of the book uses several simple examples to introduce you to GML,
before we demonstrate how you can use it to create artificial intelligence for undead creatures
in the Pyramid Panic game.

Figure 2. Game Maker Language (GML) provides extra power for advanced users.

The example games in this book have been brought to life with graphics and illustrations
by real games industry artists. Furthermore, you can use all the professional resources pro-
vided on the CD in your own Game Maker projects with the blessing of the publisher and
authors. We only ask that you share your creations with the online Game Maker community
so that we can see what you have created with them. We want you to enjoy the creative journey
ahead and hope that it will help you to share in our passion and enthusiasm for creating
computer games!

■INTRODUCTION xxi

6153FM.qxd 3/25/06 3:50 PM Page xxi

6153CH01.qxd 3/25/06 4:00 PM Page xxii

Getting Started

Welcome to the world of game development. Playing games can be a lot of fun, but

you’re about to discover why making them is so much better!

P A R T 1

6153CH01.qxd 3/25/06 4:00 PM Page 1

6153CH01.qxd 3/25/06 4:00 PM Page 2

Welcome to Game Maker

If you’re looking for an enjoyable way to learn how to make computer games, then this is the
book for you. You don’t need a degree in computer science and you won’t have to read a book
the size of a telephone directory—everything you need is right here. As long as you can use
Windows without breaking into a cold sweat, you have all the qualifications you need to start
making your own games. In the chapters ahead, we’ll show you how to make nine complete
games and pass on some of our hard-earned professional experience in game design along the
way. Already, you are just two chapters away from completing your first game and have taken
your first step along the path of the game maker’s apprentice!

Every trade has its tools, and every tradesman knows how to choose the right tool for the
job. In this book we will be creating all the games using a software tool for Windows called
Game Maker. Game Maker is ideal for learning game development as it allows you to start
making games without having to study a completely new language. This makes the whole
learning experience a lot easier and allows you to concentrate on creating great game designs
rather than getting bogged down with the technicalities of programming. Nonetheless, pro-
gramming languages can offer many advantages to experienced users and so Game Maker
also includes its own language, which is there for you to discover when you feel ready to use it.

You’ll be pleased to hear that there is a free version of Game Maker included on the CD
accompanying this book. All the games can be made using this free version; however, there are
some special effects in the later chapters that will only work with a registered version of Game
Maker. If you want to register your version for this, or any of the other extra features that it
unlocks, then it can be obtained from the Game Maker website for a very small fee (currently
US $20): www.gamemaker.nl.

Installing the Software
You can’t begin making the games in this book until you have the Game Maker software
installed on your PC. You’ll find the install program in the Program folder on the CD, so insert
the disc, navigate to the Program folder, and start the program called gmaker_inst.exe. The
form shown in Figure 1-1 should then appear on the screen.

3

C H A P T E R 1

6153CH01.qxd 3/25/06 4:00 PM Page 3

Figure 1-1. Install Game Maker by following the instructions on the screen.

Click Next and follow the instructions as they appear. We strongly recommend installing
the program in the default directory.

■Note Game Maker requires a fairly modern PC running Windows 98SE, Me, 2000, or XP—although
Windows XP is preferable. You’ll need a DirectX-compatible graphics card with at least 32MB of memory and
DirectX 8 or later installed on your machine. A DirectX-compatible sound card is also required for sound and
music. If your machine does not meet these requirements, you might have problems running Game Maker
or the games created with it. Don’t worry if all this techno-babble makes no sense—just try it out because
you’re not likely to have any problems unless your PC is very old. See the readme file in the Program folder
on the CD for further details.

Game Maker should start automatically once the installation has completed. You can also
launch it directly from the Windows Start menu or by double-clicking the Game Maker icon
on your desktop. The first time you run Game Maker on a new computer, you will be asked if
you want to run the program in Advanced mode (see Figure 1-2). Click No as it will be easier
to stick with the Simple mode for the time being—we’ll show you how to switch to Advanced
mode later on.

CHAPTER 1 ■ WELCOME TO GAME MAKER4

6153CH01.qxd 3/25/06 4:00 PM Page 4

Figure 1-2. Click No at the prompt, as we want to start by using Simple mode.

Registration
The free version of Game Maker provided with this book is fine for learning how to make all
the games in this book, but some of Game Maker’s more exciting features are disabled unless
you register the program. Registering will also allow you to create more professional-looking
games by removing the Game Maker pop-up message that appears at the start of any game.
Until you register, a reminder message will appear from time to time like the one shown in
Figure 1-3. Clicking Close this Form will make it disappear, but if you use Game Maker a lot
we strongly encourage you to register it. Registration will support the further development of
Game Maker and ensure that everyone who uses it can continue to enjoy making games for
years to come. Information about registration can be obtained by clicking Go to Registration
Webpage or by simply visiting the Game Maker website at www.gamemaker.nl.

Figure 1-3. Select Close this Form to start working with Game Maker or Go to Registration
Webpage to learn more about registration.

CHAPTER 1 ■ WELCOME TO GAME MAKER 5

6153CH01.qxd 3/25/06 4:00 PM Page 5

The Global User Interface
If everything has gone according to plan, then you should now be looking at the window
shown in Figure 1-4. If not, consult the readme file in the Program folder on the CD for possible
causes and further instructions.

Figure 1-4. This is Game Maker’s main window.

We’ll describe the user interface in more detail in the next chapter, but for the moment
just notice that there’s a standard-looking menu and toolbar at the top of the screen, and a
folder tree on the left-hand side. This tree is where we will add all the different game resources
that are used to make Game Maker games. More about resources later, but first let’s make sure
Game Maker is working properly by running a simple game.

Running a Game
Loading and running a game that has been created using Game Maker couldn’t be simpler.
Just complete the following instructions.

CHAPTER 1 ■ WELCOME TO GAME MAKER6

6153CH01.qxd 3/25/06 4:00 PM Page 6

Running the sample game:

1. Click the File menu and select Open from the drop-down menu. This will bring up the
standard Windows file requester.

2. Make sure the CD is in your CD drive. Navigate to the Games/Chapter01 folder on the
CD and look for bouncing.gm6 (all Game Maker files end with this .gm6 extension).
Select this file and click Open.

It may not seem as if anything has changed, but if you look carefully, there are now plus
signs in front of the different folders on the left-hand side. Clicking these plus signs will open
up the folders to show the resources that they contain.

Let’s run the game. Don’t expect too much, though; this is just a simple demo to check
whether Game Maker works correctly on your machine. Click the green play button on the
toolbar. The Game Maker window should disappear and the image in Figure 1-5 will appear.
This is the pop-up that is only shown in the free version of the program and can be removed
by registering your copy of Game Maker.

Figure 1-5. This pop-up message appears in the free version of Game Maker.

After a short pause, a game window should appear like the one in Figure 1-6. You should
hear music and see a number of balls bouncing around the screen. If you like, you can try to
destroy the balls by clicking on them with the left mouse button, or you can press F4 to make
the game window fill the screen. When you have seen enough, press the Esc key to end the game.

Figure 1-6. In the bouncing ball demo, you can try to destroy the balls by clicking on them with
the left mouse button.

CHAPTER 1 ■ WELCOME TO GAME MAKER 7

6153CH01.qxd 3/25/06 4:00 PM Page 7

If something went wrong (for example, you got an error message or you didn’t hear the
music), then consult the readme document in the Program folder on the CD for possible causes
and further instructions. You can now close Game Maker by choosing Exit from the File menu.

How to Get More Information
This book will show you how to make some cool games with Game Maker, but it is not a com-
plete manual for everything that Game Maker can do. Fortunately, the Game Maker help file
contains all the facts, and you can access it at any time through the program’s Help menu or
the Windows Start menu. A copy of this document is also available in the Documents folder
on the CD.

You are also strongly advised to check out the official Game Maker website at
www.gamemaker.nl. Here you’ll find the latest version of the program and lots of games that
have been created with it—as well as additional resources and documents. The website also
gives you access to the Game Maker user forum. This is a very active forum and a great place
to get help from other users or just to exchange ideas and games.

What’s Next?
Now that the boring stuff is out of the way, so I think it’s about time we made our first game.
You’re probably thinking your first game will be pretty dull—something with more bouncing
balls, perhaps? Not likely!

CHAPTER 1 ■ WELCOME TO GAME MAKER8

6153CH01.qxd 3/25/06 4:00 PM Page 8

Your First Game:
Devilishly Easy

Learning something new is always a little daunting at first, but things will start to become
familiar in no time. In fact, by the end of this chapter, you’ll have completed your very first
gaming masterpiece!

Designing the Game: Evil Clutches
Before you start making a game, it’s a good idea to have an idea of what you’re aiming for.
Commercial game developers usually prepare long design documents before they start creat-
ing a game. Nonetheless, writing documents isn’t a fun way to learn how to make games, so
we’ll keep our designs as short as possible. We’re calling the game in this chapter Evil Clutches,
and this is its design:

You play a mother dragon who must rescue her hatchlings from an unpleasant band of
demons that have kidnapped them. The band’s boss sends a stream of demons to destroy the
dragon as the hatchlings make their escape. The mother can fend off the boss’s minions by
shooting fireballs, but must be careful not to accidentally shoot the hatchlings!

The arrow keys will move the dragon up and down and the spacebar will shoot fireballs.
The player will gain points for shooting demons and rescuing young dragons, but will lose
points for any hatchlings that accidentally get shot. The game is over if the dragon is hit by a
demon, and a high-score table will be displayed. Figure 2-1 shows an impression of what the
final game will look like.

Using this description, we can list all the different elements needed to create our game:
a dragon, a boss, demons, hatchlings, and fireballs. Making the game will require pictures of
each of these as well as a background image, some sound effects, and music. We call all these
different parts that make up the game resources, and the resources for this game have already
been created for you in the Resources/Chapter02 folder on the CD. For the remainder of the
chapter, we will learn how to put these resources together into a game and bring them to life.

9

C H A P T E R 2

6153CH02.qxd 3/15/06 4:04 PM Page 9

Figure 2-1. Here’s the Evil Clutches game in action.

Sprites
In Game Maker, pictures of dragons, demons, and other game objects are all called sprites.
Sprites are one kind of resource used in games, and they can be made from images that have
been created in art packages or downloaded from the Internet. Game Maker includes a simple
sprite editor for drawing your own sprites, but you can use any drawing package you like for
this purpose. However, creating sprites is time consuming, so we’ve already provided profes-
sionally drawn sprites for each game.

If you’ve not done so already, start up Game Maker. Figure 2-2 shows the (rather empty)
main window that appears.

■Note If your window doesn’t look exactly the same as shown in Figure 2-2, then you’re probably running
Game Maker in Advanced mode. To switch to Simple mode, choose Advanced Mode from the File menu
and the checkmark beside it will disappear.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY10

6153CH02.qxd 3/15/06 4:04 PM Page 10

Figure 2-2. In the main window of Game Maker (in Simple mode), the menu and toolbar runs
along the top of the window and a list of resources down the left side.

The left side of the window shows the different types of resources that make up the game:
sprites, backgrounds, sounds, and so forth. These are currently empty, but the names of new
resources will appear here as they are added to the game. The menu bar along the top of the
window contains all the commands that allow us to work with resources—although most
common tasks can also be accessed using the buttons on the toolbar. We’ll begin by using the
Create Sprite command to create a new sprite.

Creating a new sprite resource for the game:

1. From the Resources menu, choose Create Sprite. The Sprite Properties form appears,
like the one shown in Figure 2-3.

Figure 2-3. Open the Sprite Properties form for a new sprite.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 11

6153CH02.qxd 3/15/06 4:04 PM Page 11

2. Click the Name field, where it currently says sprite0. This is the default name created
by Game Maker for the new sprite, but you should rename it to sprite_dragon.

3. Click the Load Sprite button. This opens the standard Windows file requester.

4. Select the required image using the file requester. The image for the dragon is called
Dragon.gif, and you’ll find it in the Resources/Chapter02 folder on the CD. Your Sprite
Properties form should now look like Figure 2-4.

■Note Always avoid using spaces and punctuation in names for resources as they will confuse Game
Maker when you try to use some of its more advanced functions later on. You can use the underscore (_)
symbol instead of spaces, which is usually found on the same key as the minus symbol (press Shift and the
minus key).

Figure 2-4. The Sprite Properties form looks like this after we load the dragon sprite.

5. Click OK to close the form. You have now created a sprite.

The dragon sprite should now have been added to the list of sprites in the resource list. If
you ever need to change a resource, you can reopen its properties form by double-clicking on
its name in the resource list. Do this now and take another look at the dragon sprite’s proper-
ties (Figure 2-4).

The form shows that there are six subimages to this sprite. Sprites often consist of several
images shown one after the other to create the illusion of movement. If you move through the
subimages using the blue arrow button, you will notice that there are actually only two differ-
ent images for this sprite. The extra copies make sure that the dragon doesn’t flap its wings too
quickly when it’s animating.

The checkmark next to the Transparent property means that the background of the
dragon sprite is see-through. Most sprites are set to transparent so that the surrounding rec-
tangle won’t be drawn when the sprite appears in the game. Figure 2-5 shows the difference
that the Transparent option makes—the advantages are obvious to see!

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY12

6153CH02.qxd 3/15/06 4:04 PM Page 12

Figure 2-5. Here’s the dragon sprite with the Transparent option set (left) compared to the same
dragon without the Transparent option (right).

■Note Game Maker works out which color to make transparent based on the color in the bottom leftmost
corner of each image. This is worth remembering when you want to create your own sprites.

Okay, let’s create the other sprites for the game in the same way.

Creating the remaining Evil Clutches sprites:

1. From the Resources menu, choose Create Sprite.

2. In the Name field in the Sprite Properties form, type the name sprite_boss.

3. Click the Load Sprite button and choose the file Boss.gif.

4. Click OK to close the Sprite Properties form.

5. Now create a demon sprite, baby sprite, and fireball sprite using the Demon.gif,
Baby.gif, and Fireball.gif files in the same way. Give each sprite an appropriate
name (using only letters and the underscore symbol).

This completes all the sprites needed to create the Evil Clutches game.

Objects
Sprites don’t do anything on their own; they just store pictures of the different elements in the
game. Objects are the parts of the game that control how these elements move around and
react to each other. We’ll begin by creating our first object to tell Game Maker how we want
the demon boss to behave.

The Boss Object
The following steps create a new object and assign it a sprite so that Game Maker knows how
it should look on the screen.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 13

6153CH02.qxd 3/15/06 4:04 PM Page 13

Creating a new object and assigning it a sprite:

1. From the Resources menu, choose Create Object. An Object Properties form like the
one in Figure 2-6 appears.

Figure 2-6. Open the Object Properties form for your new object.

2. In the Name field, give the object a name. You should call this one object_boss.

3. Click the icon at the end of the sprite field and a list of all the available sprites will
appear. Select the sprite_boss sprite.

■Caution Always make sure that you give your object resources names that are different from your sprite
resources. Ending up with an object and a sprite both called “dragon,” or two objects called “demon,” can
confuse Game Maker when you try to use its more advanced functions later on. Adding prefixes like “sprite_”
or “object_” to names is a good way to achieve this without having to think of new names.

Events and Actions
Game Maker uses events and actions to specify how objects should behave. Events are impor-
tant things that happen in the game, such as when objects collide or when the player presses a
key on the keyboard. Actions are things that happen in response to an event, such as changing
an object’s direction, setting the score, or playing a sound. Game Maker games are basically
just a collection of objects with actions to tell them how they should react to different events.
Therefore, to set the behavior of an object in Game Maker you must define which events the
object should react to and what actions they should perform in response.

The boss object’s lists of events and actions are currently empty. We’re going to begin by
adding an event and action that will start the boss moving up the screen at the beginning of

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY14

6153CH02.qxd 3/15/06 4:04 PM Page 14

the game. This will be complemented by an action that reverses the vertical direction of the
boss in the event that it collides with the edge of the screen. As a result, the boss will continu-
ally move up and down between the top and bottom of the screen.

Adding a create event for the boss object:

1. Click the Add Event button. The Event Selector appears, as shown in Figure 2-7.

Figure 2-7. Click Add Event to open the Event Selector pop-up form.

2. Click the Create event to add it to the list of events. A new event is automatically
selected (with a blue highlight) in the event list, as shown in Figure 2-8. This means
we’re already looking at this event’s Actions list alongside it (which is currently empty).

Figure 2-8. This is how the Object Properties form should look once the name, sprite, and
Create event have been added.

3. Next you need to include the Move Fixed action in the list of actions. To do this, press
and hold the left mouse button on the action image with eight red arrows, drag it to the
empty Actions list box, and release the mouse button. An action form will then pop up
asking for particular information about this action (see Figure 2-9).

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 15

6153CH02.qxd 3/15/06 4:04 PM Page 15

Figure 2-9. Here’s the action form for the Move Fixed action.

■Note Whenever we use an action in the instructions, that action’s image is shown in the left margin to
help you find the correct one.

4. Select the up arrow and enter a value of 8 for the Speed. This will make the object move
vertically 8 pixels (the tiny squares that make up a monitor display) for every step that
it takes.

5. Press OK to close the action form and it will be included in the list of actions.

■Note All of Game Maker’s actions are organized into tabbed pages of icons on the right of the Actions
list. Browse through the different action tabs to see all the various actions and hold your mouse over one to
reveal its name.

This event should start the boss moving upward. Now we’ll add an event to reverse an
object’s vertical direction when it collides with the edge of the screen. This event is called the
Intersect Boundary event because it gets called when the object’s sprite intersects the screen’s
boundary by being partly in and partly out of the screen.

Adding an intersect boundary event for the boss object:

1. Click the Add Event button.

2. Choose Other from the Event Selector pop-up form and select Intersect boundary
from the drop-down menu that appears. This action will then be added and selected
in the list of events.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY16

6153CH02.qxd 3/15/06 4:04 PM Page 16

3. Include the Reverse Vertical action in the list of actions for this event. You’ll now see
the form shown in Figure 2-10.

Figure 2-10. The action form for the Reverse Direction action looks like this.

4. Nothing needs changing on this form, so just click OK. The Object Properties form for
the boss object now looks like the one shown in Figure 2-11.

Figure 2-11. In the Object Properties form for the boss object, we’ve added two events,
along with their corresponding actions.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 17

6153CH02.qxd 3/15/06 4:04 PM Page 17

These are all the events and actions we need for the boss right now. You can switch
between the different events by clicking on them in the Events list. The selected event
is highlighted in blue and the actions for that event are then shown in the Actions list.
You can edit the properties of each action by double-clicking on them, but we’re done
with the boss object for now.

5. Click OK at the bottom left of the form to close it.

The Dragon Object
Now let’s turn our attention to the heroine of the game. We’ll begin by creating an object for
the dragon in the same way as for the boss.

Creating a dragon object:

1. From the Resources menu, choose Create Object.

2. Give the object a name by entering object_dragon in the Name field.

3. Select the sprite_dragon sprite from the drop-down sprite menu.

The dragon also needs actions to make it move up and down the screen, but this time
only when the appropriate keys are pressed on the keyboard. We do this by using keyboard
events.

Adding keyboard events for the dragon object:

1. Click the Add Event button.

2. Choose a Keyboard event and select <Up> from the pop-up menu (to indicate the up
arrow key).

3. Include the Move Fixed action in the Actions list.

4. In the action form, select the upward direction and set Speed to 16.

5. Repeat the previous process to add a Keyboard event for the <Down> key that
includes a Move Fixed action with a downward direction and a speed of 16. The Object
Properties form should now look like the one shown in Figure 2-12.

We just need one more event and action to make the dragon’s movement work correctly.
Our Keyboard events will start the dragon moving when the player presses the arrow keys, but
there are currently no events to stop it from moving again when the keys are no longer being
pressed. We use the Keyboard, <no key> event to test for when the player is no longer pressing
any keys.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY18

6153CH02.qxd 3/15/06 4:04 PM Page 18

Figure 2-12. The Object Properties form for the dragon looks like this once we add the <Up> and
<Down> events.

Adding a no key event for the dragon object:

1. Click the Add Event button.

2. Choose a Keyboard event and select <no key> from the pop-up menu.

3. Include the Move Fixed action in the Actions list for this event.

4. Select the center square in the action form, to indicate no movement, and set Speed to
0. The form should now look like Figure 2-13.

5. That’s all the actions we need to make our dragon move up and down, so click OK to
close the Object Properties form for the dragon object.

Figure 2-13. These settings stop the
movement of the dragon.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 19

6153CH02.qxd 3/15/06 4:04 PM Page 19

■Caution When setting a Move Fixed action with a speed of 0, you must also select the center square of
the direction grid. If no direction square is selected at all, then the action is ignored!

Rooms
Our dragon and boss objects are all ready to go now, but in order to see them we need to put
them into a level. Levels in Game Maker are made using rooms, and putting objects into a
room defines where they will appear at the start of the game. However, not all objects need to
be there at the start of the game, and they can be created on the fly as well (fireballs, for exam-
ple). Let’s create a new room.

Creating a new room resource:

1. Select Create Room from the Resources menu. A Room Properties form will appear
(see Figure 2-14).

Figure 2-14. The Room Properties form for a new room opens.

■Note If there are sliders along the edges of the room grid, then the window is not currently large enough
to see the entire room. Maximize the Game Maker window and the Room Properties form to see more of the
room, or use the sliders to scroll around the entire room.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY20

6153CH02.qxd 3/15/06 4:04 PM Page 20

2. Click the settings tab in the top left of the form.

3. Enter a name for the room in the Name field. Call this one room_first.

4. Enter a caption for the title bar of the window when the game is running. “Evil
Clutches” seems appropriate for this game. The room settings should now look like
Figure 2-15.

Now we can place our objects in the new room.

Adding a dragon and boss to the room:

1. Click the objects tab in the top left of the form. You should see that the dragon object is
already selected as the object “to add with left mouse.”

2. Click on the room grid with the left mouse button. An instance of the dragon object
will be placed with its top-left corner at the point at which you click. The position you
place the dragon becomes its starting position in the game, so put just one dragon
close to the left boundary of the room area. If you add it in the wrong place, use the
right mouse button to remove it again.

3. Click on the dragon’s image on the objects tab (or on the image of the pop-up menu
next to where it says object_dragon) and select the boss object from the menu that
appears.

4. Place an instance of the boss close to the right edge of the room, but make sure that
the whole of his sprite is completely inside the room—otherwise his events will not
work correctly! The room should now look something like Figure 2-16.

Figure 2-15. Here’s the settings tab of the Room Properties
form, with the name and caption filled in.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 21

6153CH02.qxd 3/15/06 4:04 PM Page 21

Figure 2-16. The room with the dragon and the boss looks like this.

Our very first version of the game is now ready. Click the green checkmark in the top-left
corner of the form to close it and you can see the results of your labor . . .

■Tip You can also click and hold the mouse button to move instances within a room.

Save and Run
It’s always a good idea to save your work as often as possible—just in case your computer
crashes. In case you haven’t already worked it out for yourself, then the steps for this process
are given here. However, in the future you’ll have to remember to save your work regularly
yourself! This works in the same way as most programs.

Saving your work and running the game:

1. Choose Save from the File menu (or click the disk icon).

2. The first time you save the game, you will be prompted for a location and filename in
the normal way. Note that Game Maker files always end with the extension .gm6. Save
this game in a place where you can easily find it again (on the desktop, for example).

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY22

6153CH02.qxd 3/15/06 4:04 PM Page 22

3. To run the game, select Run Normally from the Run menu. After a brief pause, a game
window should appear, like the one shown in Figure 2-17.

Figure 2-17. Here’s the first version of the Evil Clutches game in action.

You should now be able to move the dragon up and down using the arrow keys, and the
boss should float up and down by itself. If your game doesn’t work in this way, then you might
want to check through all your steps in the previous sections. You may also need to ensure that
your game window is selected (by clicking on it with the mouse) before your keyboard input
has any effect. All games we make in the book are stored on the CD in stages, and the current
version of the game can be found on the CD in the file Games/Chapter02/evil1.gm6.

Although we now have a running game, it’s not much fun to play yet as there are no goals
or challenges. We’ll spend the remainder of the chapter turning it into a playable game. Press
Esc to stop the game.

■Tip Pressing F4 while the game is running will maximize the game to fill the entire screen. Press F4 again
to return to the windowed version.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 23

6153CH02.qxd 3/15/06 4:04 PM Page 23

Instances and Objects
So far we have two object resources in our game and two characters appearing on the screen.
However, there is an important distinction to be made between object resources and instances
of objects that appear on screen. It may seem odd, but now that we have made dragon and
boss objects, we can put as many instances of dragons and bosses on the screen as we like. Try
it—go back and place more dragons and bosses in the room. If you run the game, you will find
that they all behave in exactly the same way as the original instances! (Don’t forget to remove
them again afterward using the right mouse button.) A good way to think of the relationship
between objects and instances is to think of objects as jelly molds and instances as the jellies
that you make with them. You only need one mold to make any number of jellies, yet the mold
defines the appearance of all of them (see Figure 2-18). From now on we will talk about
instances and objects in this way, so it is important that you appreciate the difference.

Figure 2-18. Object resources are like jelly molds, and they can be used to create any number of
object instances on the screen at once.

Demons, Baby Dragons, and Fireballs
To create some challenges and goals, we’re going to need to bring our remaining objects into
the game. Let’s start by giving the dragon the ability to breathe fireballs—as dragons often do!

The Fireball Object
To create the fireball object you’ll need the fireball sprite. If you didn’t get around to doing this
earlier, then quickly flick back a few pages and add it in the way that was described in the
“Sprites” section. You should remember the basic steps required to making a new object by
now, but here they are one more time, just in case.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY24

6153CH02.qxd 3/15/06 4:04 PM Page 24

Creating the fireball object:

1. Select Create Object from the Resources menu.

2. Call the object object_fireball.

3. Select the fireball sprite.

We now need to think about how we want fireballs to behave. When the dragon creates
a fireball, we want it to move across the screen toward the boss and get destroyed when it
reaches the other side of the screen.

Adding the fireball object’s events:

1. Click the Add Event button and choose the Create event.

2. Include the Move Fixed action in the Actions list. Select the right arrow to indicate the
direction and set Speed to 32 (fireballs fly fast!).

3. Click the Add Event button again, select Other events, and pick Outside room.

4. Select the main1 action tab and include the Destroy Instance action in the Actions
list. In the action form that pops up, simply click OK. The fireball Object Properties
form should now look like Figure 2-19.

5. Click OK to close the fireball Object Properties form.

Figure 2-19. The properties form for the fireball object should now look like this.

■Caution It is always a good idea to make sure that instances are deleted when they’re not needed any
more (when they go off the edge of the screen, for example). Even though you can’t see them, Game Maker
still has to spend time updating them, and too many instances will eventually slow down the program.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 25

6153CH02.qxd 3/15/06 4:04 PM Page 25

Now we need to tell the dragon object to create instances of the fireball object when the
player presses the spacebar. We do this in a similar way to the events that make the dragon
move, but this time using a Key Press event rather than a Keyboard event. Keyboard events
happen as long as the player continues to hold down the key, but Key Press events happen
only once when the key is first pressed. Using a Keyboard event for the fireballs would create
a continuous stream of fireballs and make the game too easy, so that’s why we’re using Key
Press instead.

Creating a Key Press event for the dragon object:

1. Double-click the dragon object in the resource list (not the dragon sprite). This will
bring back the Object Properties form for the dragon object.

2. Click the Add Event button. Select the Key Press event and then choose <Space> from
the pop-up menu.

3. Select the main1 action tab and include the Create Instance action in the Actions list.

4. In the action form that appears, we need to specify which type of instance to create
and where on the screen it should be created. Select the fireball object from the menu,
enter a value of 100 into X and 10 into Y, and select the Relative checkbox. Figure 2-20
shows what the completed action form should look like.

5. Click OK to close the action form and click OK again to close the Object Properties
form.

Figure 2-20. Note that we checked the Relative property to make the fireball appear
relative to the position of the dragon.

The x and y values you just entered are screen coordinates, which are used to indicate
positions on the game screen. Screen coordinates are measured in pixels (the tiny squares that
make up a monitor display), with x values indicating the number of pixels horizontally, and y
values indicating the number of pixels vertically.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY26

6153CH02.qxd 3/15/06 4:04 PM Page 26

We need to select the Relative option because the fireball needs to be created on the
screen in front of the dragon, in other words, relative to the dragon’s position. However, the
dragon’s position is measured from the top-left corner of its sprite—just above its wings—and
this would be a crazy place for the fireball to appear! Giving an x-coordinate of 100 moves the
fireball across 100 pixels to the right (to just above its head) and a y-coordinate of 10 brings it
10 pixels down. This creates the fireball right in front of the dragon’s mouth and exactly where
we need it (see Figure 2-21). Test the game now to check that you can use the spacebar to
shoot fireballs, and that they appear in the correct position.

Figure 2-21. The fireball needs to appear from the dragon’s mouth, which is 100 pixels across and
10 pixels down from the origin of the dragon’s sprite.

The Demon Object
The demon object will work in the same way as the fireball, except that demons fly from right
to left and are created by the boss. Also, to make demons a bit more interesting, we’ll start
some moving diagonally as well as horizontally. Those that head diagonally for the top or
bottom of the screen will need to reverse their vertical direction when they intersect the
boundary—like the boss object does. We’ll also need to destroy demons when they go outside
the room, like the fireball. Next we provide the steps you need to do all of this; notice that
we’ve started to shorten the steps that you should be familiar with by now.

Creating the demon object:

1. Create a new object called object_demon and give it the demon sprite.

2. Add a Create event and include the Move Fixed action.

3. Select all three left-pointing direction arrows and set Speed to 12. Selecting more than
one direction causes Game Maker to randomly choose between them when an
instance is created. The action form should now look like Figure 2-22.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 27

6153CH02.qxd 3/15/06 4:04 PM Page 27

4. Add an Intersect boundary event (in the Other events) and include the Reverse
Vertical action in it.

5. Add an Outside room event (also in the Other events) and include a Destroy Instance
action in it.

The demons will now bounce back and forth between the top and the bottom of the
screen, but we also need them to react to collisions with other instances. For this we use a
collision event, which happens when two sprites of different objects overlap on the screen.
The first collision event we need is for when a demon collides with a fireball. This event should
destroy the demon, and reward the player by increasing their score. There are a number of dif-
ferent actions dealing with scores, health, and lives in the score actions tab. As soon as the
score changes, it will automatically be displayed in the game window caption.

Adding an event to the demon object for colliding with the fireball:

1. Click the Add Event button, choose the Collision event, and select the fireball object
from the pop-up menu.

2. Include the Destroy Instance action from the main1 action tab.

3. Also include a Set Score action from the score tab. This should automatically appear
below the Destroy Instance action in the Actions list. Lists of actions like this are
carried out one after another, starting from the top of the list and working down.

4. Enter a value of 100 in the Set Score action form, and click the Relative property. This
property makes the action set the score relative to the current score, so 100 will be
added to the score rather than setting the score to 100. See Figure 2-23.

If a demon collides with the dragon, then the game is over. When this happens, we want
to bring up a high-score table and (when appropriate) let the player enter their name. After
showing the high-score table, we want to restart the game. Conveniently, Game Maker pro-
vides a Show Highscore event that handles most of this automatically.

Figure 2-22. In the move action for the demon,
note that all three arrows to the left are
pressed, so a random direction out of the
three is selected for each demon created.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY28

6153CH02.qxd 3/15/06 4:04 PM Page 28

Adding an event to the demon object for colliding with the dragon:

1. Add a Collision event for colliding with the dragon object.

2. Include a Show Highscore action from the score tab.

3. Click OK to keep the default settings for this action’s properties.

4. Also include a Restart Game action from the main2 tab. This action has no properties.

5. The object properties form for the demon should now look like Figure 2-24. Check that
you have included all the demon object’s events. We’re done with this object for now,
so click OK.

Figure 2-24. The Object Properties form for the demon object now looks like this.

Figure 2-23. We add 100 to the score by setting
the Relative property.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 29

6153CH02.qxd 3/15/06 4:04 PM Page 29

Summoning Demons
That’s it for the demon, but we still need the boss to create instances of the demon in the first
place. However, we don’t want the demons to appear at regular intervals because this would
make the game too easy. Instead, we want there to be a random chance that a demon is cre-
ated at each “step” of the game. A step is essentially just a short period of time in which
everything on the screen moves a very small distance. There are normally 30 steps in every
second, so we only need there to be a very small chance that a demon is created in each step.
We achieve this by using a Test Chance action, which acts like throwing a die with many sides
(see Figure 2-25). In each step we throw the die, but only one side will trigger the chance
action and create a demon. In this way, we create a steady, but unpredictable, flow of demons.

Figure 2-25. The more sides a die has, the less often Game Maker will throw the one side that
triggers the Test Chance action.

Adding a step event to the boss object:

1. Double-click the boss object in the resource list to bring back its Object Properties
form.

2. Click the Add Event button, select the Step event, and choose Step again from the pop-
up menu.

3. Include the Test Chance action from the control tab. Set the sides of the die to 50 in
the action’s properties.

4. Also include the Create Instance action in the Actions list for this event. Set the prop-
erties to create a demon object and select the Relative option, so that the demon is
created relative to the boss’s position. The event should now look like Figure 2-26.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY30

6153CH02.qxd 3/15/06 4:05 PM Page 30

Figure 2-26. In this step event, demons are randomly created.

The Test Chance action is an example of a conditional action. Conditional actions control
the action that immediately follows them so that it is only performed if some condition is met.
So in this case the Create Instance action is only performed if the Test Chance action rolls a 1
using a 50-sided die—otherwise it is skipped.

Click OK, save your work, and run the game to test it. Demons should now be appearing,
and you should be able to shoot them with your fireballs to rack up your score in the window
caption. When you eventually get hit by a demon, the high-score table will be displayed and
the game restarts. How long can you survive?

The Baby Dragon Object
We now have a game with two goals: shooting demons and staying alive. However, it’s still not
much fun to play as it’s far too easy to provide any real challenge. To increase the challenge,
we’re going to occasionally throw in a baby dragon along with the demons. If the player shoots
a baby dragon, they will lose 300 points, but if they rescue one they will gain 500 points. This
will mean that the player will have to be much more careful about when they shoot, thereby
increasing the challenge of the game.

Creating a new baby dragon object and its events:

1. Create a new object called object_baby, and give it the baby dragon sprite.

2. Add a Create event for the object and include a Move Fixed action in it. Set it to move
left with a Speed of 8 (slower than the demons to make life harder).

3. Add an Outside room event (in Other events) and include a Destroy Instance action
from the main1 tab.

4. Add a Collision event with the fireball object and include a Destroy Instance action in
that as well.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 31

6153CH02.qxd 3/15/06 4:05 PM Page 31

5. Also include a Set Score action in the collision event with a value of -300 and the
Relative property selected. This will subtract 300 from the player’s score.

6. Add a Collision event with the dragon object and include the Destroy Instance action
in it.

7. Also include the Set Score action with a value of 500 and the Relative property
selected. This will add 500 to the player’s score. The baby dragon object should now
look like Figure 2-27.

8. Click OK to close the properties form.

Figure 2-27. The Object Properties form for the baby dragon object looks like this.

Now we need to make the boss randomly release baby dragons as well as demons. This is
exactly the same as for the demons except we will use a value of 100 for the die so that they are
created less often.

Editing the boss object to randomly create baby dragons:

1. Reopen the Object Properties form for the boss object.

2. Click on the existing Step event to select it and view its actions.

3. Include another Test Chance action in the Step event. Set the sides of the die to be 100
in the action’s properties.

4. Include the Create Instance action below the new Test Chance action in the Actions
list. Set the properties to create a baby object and select the Relative option.

That completes the second phase of our game! All the gameplay elements are now in
place. Save the game and carefully test it to make sure it works correctly. You’ll also find the
current version of the game on the CD in the file Games/Chapter02/evil2.gm6.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY32

6153CH02.qxd 3/15/06 4:05 PM Page 32

Backgrounds and Sounds
In this section we’ll finish off the look and feel of our game by adding background graphics,
sound effects, and music. As you’ll see, these finishing touches have quite a dramatic effect
on how professional the game seems.

A Background Image
The first improvement we’ll make is to add a background to the room. Backgrounds are
another type of resource, like sprites, rooms, and objects. We’ve created an image that is
exactly the same size as the game window (640✕480 pixels). This needs to be loaded into a
new background resource, which can then be assigned to a room.

Creating a new background resource and assigning it to a room:

1. Select Create Background from the Resources menu.

2. Call the background background_cave, and click the Load Background button. Select
the Background.bmp image from the Resources/Chapter02 folder on the CD. The Back-
ground Properties form should now look like Figure 2-28.

3. Click OK to close the Background Properties form.

4. Reopen the properties form for the room by double-clicking on it.

5. Select the backgrounds tab in the Room Properties form. Click the menu icon to the
right of where it says <no background> and select the new background from the pop-
up menu. The Room Properties form now looks like Figure 2-29.

6. Close the Room Properties form by clicking the green checkmark in the top-left corner
of the form.

Figure 2-28. The Background Properties form allows you to load and edit backgrounds.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 33

6153CH02.qxd 3/15/06 4:05 PM Page 33

Figure 2-29. The room looks a lot more atmospheric once you add the background to the room.

Background Music
The next step is to add some atmospheric music. Sounds are another kind of Game Maker
resource for including both sound effects and music. We need to create a sound resource for
the music and then set up an action to start the music playing. We’ll include this action in the
Create event of the boss object so that it starts playing at the beginning of the game, but it
would work just as well in the dragon object too.

Creating a music sound resource and playing it in the boss object:

1. Select Create Sound from the Resources menu and call it sound_music.

2. In the properties form that appears, click Load Sound and select the Music.mp3 file
from Resources/Chapter02 on the CD. The Sound Properties form should now look
like Figure 2-30.

3. Close the Sound Properties form by clicking OK.

4. Reopen the Object Properties form for the boss object.

5. Click the existing Create event to select it and view its actions.

6. Include a Play Sound action (main1 tab) in the Create event.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY34

6153CH02.qxd 3/15/06 4:05 PM Page 34

7. In the action properties, select the music sound and set the Loop property to true. This
makes the music loop back to the start when it finishes. The sound action form should
then look like Figure 2-31.

8. Click OK to close the action, and click OK again to close the boss object.

Sound Effects
Adding sound effects is another way to enhance the atmosphere of a game, but they also help
to inform the player about their actions. For now, we’ll just add two sound effects to our game:
one for shooting a demon and one for shooting a baby dragon. The baby’s sound effect will be
much higher-pitched and cuter than the demon’s so that the player instantly knows they have
done something wrong.

Creating and playing sound effects for shooting babies and demons:

1. Create a new sound resource called sound_demon.

2. Load the Demon.wav file from Resources/Chapter02 on the CD.

3. Close the Sound Properties form.

Figure 2-31. This sound action loops
the background music.

Figure 2-30. The Sound Properties form allows
you to load, preview, and save sound files.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY 35

6153CH02.qxd 3/15/06 4:05 PM Page 35

4. Reopen the Object Properties form for the demon object and select the existing
Collision event with the fireball object.

5. Include a Play Sound action in the collision event and select the new sound. Leave the
Loop property set to false.

6. Close the action form and demon Object Properties form.

7. Repeat the previous steps to create a sound resource for Baby.wav. Include an action to
play it in the baby dragon object’s collision event with the fireball.

Congratulations
Congratulations on completing your very first game using Game Maker! If you need it, then
you’ll also find the final version of the game in the file Games/Chapter02/evil3.gm6, on the CD.
When you’ve finished a game, you can turn it into an executable by choosing Create Exe-
cutable from the File menu. Executables don’t need Game Maker to run, so it’s easy to give
them to your friends or put them on a website.

Now that you’re a bit more familiar with Game Maker, why not try making some changes
to the game to see what effects they have? You could add new objects to the game—there’s an
image for an “evil baby” in the resources directory that you can use. Perhaps these could be
demons in disguise? Also try changing the movement speeds of the different objects. This can
have a big impact on the difficulty of the game, as can changing the number of sides on the
dice in the Test Chance actions. Balancing the settings for all these parameters is one of a
game designer’s most important jobs, and we’ll talk more about this in Chapter 11.

This chapter has introduced you to the basic elements of Game Maker. We’ve looked at
different kinds of game resources and seen how events and actions are used to control the
behavior of objects. However, we’ve only just scratched the surface; there is still much more to
discover about Game Maker and lots of even better games to make. Our journey continues in
the next chapter with a trip to a moon or two as we learn more about events and actions by
playing with spaceships.

CHAPTER 2 ■ YOUR FIRST GAME: DEVIL ISHLY EASY36

6153CH02.qxd 3/15/06 4:05 PM Page 36

6153CH02.qxd 3/15/06 4:05 PM Page 37

6153CH03.qxd 3/21/06 4:42 PM Page 38

Action Games

There aren’t many jobs where you try to put your customers into dangerous situations,

but asteroid fields are just occupational hazards in this line of work!

P A R T 2

6153CH03.qxd 3/21/06 4:42 PM Page 39

6153CH03.qxd 3/21/06 4:42 PM Page 40

More Actions: A Galaxy of
Possibilities

We hope you enjoyed making Evil Clutches and that it gave you a sense of how easy Game
Maker is to use. However, you can achieve so much with a bit more knowledge, so let’s move
on to our second project and do something a little more adventurous.

Designing the Game: Galactic Mail
As before, it helps to set out a brief description of the game we want to create. We’ll call this
game Galactic Mail because it’s about delivering mail in space. Here’s the design:

You play an intergalactic mail carrier who must deliver mail to a number of inhabited
moons. He must safely steer a course from moon to moon while avoiding dangerous asteroids.
The mail carrier is paid for each delivery he makes, but pay is deducted for time spent hanging
around on moons. This adds pressure to the difficult task of orienting his rickety, old rocket,
which he cannot steer very well in space.

When the rocket is on a moon, the arrow keys will rotate it to allow the launch direction to
be set. The spacebar will launch the rocket, and the moon will be removed from the screen to
show that its mail has been delivered. In flight, the rocket will keep moving in the direction it is
pointing in, with only a limited amount of control over its steering using the arrow keys. When
things move outside the playing area, they reappear on the other side to give the impression of a
continuous world. The player will gain points for delivering mail, but points will be deducted
while waiting on a moon. This will encourage the player to move as quickly as possible from
moon to moon. There will be different levels, with more asteroids to avoid. The game is over if
the rocket is hit by an asteroid, and a high-score table will be displayed. Figure 3-1 shows an
impression of what the final game will look like.

This description makes it possible to pick out all the various elements needed to create
the game, namely moons, asteroids, and a rocket. For reasons that you will see later, we’ll
actually use two different moon objects (for a normal moon and an occupied moon) and two
different rocket objects (for a “landed rocket” and a “flying rocket”). All the resources for this
game can be found in the Resources/Chapter03 folder on the CD.

41

C H A P T E R 3

6153CH03.qxd 3/21/06 4:42 PM Page 41

Figure 3-1. The Galactic Mail game features moons, asteroids, and a rocket ship.

Sprites and Sounds
Let’s begin by adding all the sprites to our game. In the previous chapter, we saw that sprites
provide images for each element of the game. In this chapter, we’ll use some extra abilities of
sprites; however, before we can do this, you must set Game Maker into Advanced mode.

Setting Game Maker into Advanced mode:

1. If you are working on a game, you must save the game before switching modes.

2. Click the File menu and look for an item called Advanced Mode. If there is a check-
mark in front of it, then you are already in Advanced mode. Otherwise, click that menu
item to select it, and the main window should change to look like the one in Figure 3-2.

To make things simple, we’ll leave Game Maker in Advanced mode for the remainder of
the book, even though some of the options will only be used in the final chapters. Now we’re
going to start a new, empty game.

■Note To start a new game, choose New from the File menu. If you are already editing a game that has
had changes made to it, you will be asked whether you want to save these changes.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES42

6153CH03.qxd 3/21/06 4:42 PM Page 42

Figure 3-2. In the main window of Game Maker in Advanced mode, there are a number of
additional resources on the left and an additional menu.

Our first step is to create all the sprites we need for the game. This works in the same way
as in the previous chapter, but this time we must complete a couple of additional steps. Each
sprite in Game Maker has its own origin, which helps to control the exact position in which it
appears on the screen. By default, the origin of a sprite is set to be located at the top-left cor-
ner of the image. This means that when you move objects around in the game, it is as if you
were holding them by their top-left corner. However, because the rockets in Galactic Mail
need to sit in the center of the moons, it will be easier if we change the origin of all our sprites
to be central.

Creating new sprite resources for the game:

1. From the Resources menu, choose Create Sprite. The Sprite Properties form with
additional Advanced mode options will appear, like the one shown in Figure 3-3.

2. Click in the Name field and give the sprite a name. You should call this one
sprite_moon.

3. Click the Load Sprite button. Select Moon.gif from the Resources/Chapter03 folder on
the CD.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 43

6153CH03.qxd 3/21/06 4:42 PM Page 43

Figure 3-3. This Sprite Properties form shows the advanced options.

4. The controls for setting the origin are halfway down the second column of the form.
Click the Center button to move the origin to the middle of the sprite. You should now
see a cross in the middle of the sprite’s image indicating the position of the origin. You
can also change the origin by clicking on the sprite image with the mouse or typing in
the X and Y values directly.

5. Enable the Smooth edges option by clicking on the box next to it. This will make
the edges of the sprite look less jagged during the game by making them slightly
transparent.

6. Click OK to close the form.

7. Now create asteroid and explosion sprites in the same way using Asteroid.gif and
Explosion.gif (remember to center their origins too).

8. We’ll need two sprites for the rocket: one for when it has landed on a moon and one
for when it is flying through space. Create one sprite called sprite_landed using
Landed.gif and another called sprite_flying using Flying.gif. Center the origins of
these two sprites as before.

Before closing the Sprite Properties form for this last sprite, click the Edit Sprite button.
A form will appear like the one shown in Figure 3-4. If you scroll down the images contained
in this sprite, you’ll see that it contains an animation of the rocket turning about a full circle.
There are 72 different images at slightly different orientations, making up a complete turn of
360 degrees. We’ll use these images to pick the correct appearance for the rocket as it rotates in
the game. We can use the Sprite Editor to change the sprite in many ways, but for now simply
close it by clicking the button with the green checkmark in the top left of the window.

Your game should now have five different sprites. Next let’s add some sound effects and
background music so that they are all ready to use later on.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES44

6153CH03.qxd 3/21/06 4:42 PM Page 44

Figure 3-4. The Sprite Editor shows all the images of the rocket.

Creating new sound resources for the game:

1. Select Create Sound from the Resources menu. Note that the Sound Properties form
now has additional Advanced mode options, but we don’t need to worry about them
for now (some of these are only available in the registered version of Game Maker).

2. Call the sound sound_explosion and click Load Sound. Select the Explosion.wav file
from Resources/Chapter03 on the CD.

3. Close the form by clicking OK.

4. Now create the sound_bonus and music_background sounds in the same way using the
Bonus.wav and Music.mp3 files.

Adding all these resources at the start will make it easier to drop them into the game as we
are going along—so let’s get started on some action.

Moons and Asteroids
Both moons and asteroids will fly around the screen in straight lines, jumping to the opposite
side of the room when they go off the edge of the screen. In Game Maker this is called wrap-
ping, and it is done using the Wrap Screen action.

Creating the moon object:

1. From the Resources menu, choose Create Object. The Advanced mode Object Proper-
ties form has additional options and actions too (see Figure 3-5).

2. Call the object object_moon and give it the moon sprite.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 45

6153CH03.qxd 3/21/06 4:42 PM Page 45

Figure 3-5. The Object Properties form for the moon object looks like this.

When a moon is created, we want it to start moving in a completely random direction.

Adding a create event to the moon object:

1. Click the Add Event button and choose the Create event.

2. Include the Move Free action in the Actions list for this event.

3. This action form requires a direction and a speed. Enter a Speed of 4 and type
random(360) in the Direction property. This indicates a random direction between
0 and 360 degrees. The form should now look like Figure 3-6.

Figure 3-6. Using the random command in a Move Free action will make the moons start
moving in a random direction.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES46

6153CH03.qxd 3/21/06 4:42 PM Page 46

We also need to make sure that when the moon goes off the edge of the room, it reappears
at the other side.

Including a wrap action for the moon object:

1. Click the Add Event button, choose the Other events, and select Outside Room from
the pop-up menu.

2. Include the Wrap Screen action in the Actions list.

3. In the form that appears, you should indicate that wrapping should occur in both
directions (top to bottom and left to right). Now the form should look like Figure 3-7.

4. The moon object is now ready to go, so you can close the Object Properties form by
clicking OK.

Figure 3-7. The Wrap Screen action properties form looks like this.

The asteroid object can be created in exactly the same way as the moon earlier. However,
to keep things neat, we want to make sure that asteroids appear behind other objects when
they cross paths with them on the screen. Instances of objects are usually drawn in the order
in which they are created, so it is hard to be sure whether one type of object will appear in
front of another. However, you can change this by setting an object’s depth value. Instances
with a smaller depth are drawn on top of instances with a larger depth, and so appear in front
of them. All objects have a default depth of 0, so to make sure the asteroids appear behind
other objects we simply give them a depth greater than 0.

Creating the asteroid object:

1. Create a new object called object_asteroid and give it the asteroid sprite.

2. On the left-hand side there is a text field labeled Depth. Enter 10 in this field to change
the depth of the object from 0 to 10.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 47

6153CH03.qxd 3/21/06 4:42 PM Page 47

3. Add the Create event and include the Move Free action in the Actions list. Type
random(360) in the Direction property and enter a Speed of 4.

4. Add the Other, Outside Room event and include the Wrap Screen action in the
Actions list (indicate wrapping in both directions).

■Note From now on we will use commas in event names, such as Other, Outside Room to show the two
stages involved in selecting the event.

5. The Object Properties form should now look like Figure 3-8. Click OK to close the form.

Figure 3-8. We’ve set the depth for the asteroid object.

Now would seem like a good time to check that everything has gone according to plan so
far. However, before we can do that we must create a room with some instances of moons and
asteroids in it.

Creating a room with moon and asteroid instances:

1. Select Create Background from the Resources menu.

2. Call the background background_main, and click the Load Background button. Select
the Background.bmp image from the Resources/Chapter03 folder on the CD.

3. Click OK to close the Background Properties form.

4. Select Create Room from the Resources menu. If the whole room isn’t visible, then
enlarge the window.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES48

6153CH03.qxd 3/21/06 4:42 PM Page 48

5. Select the settings tab and call the room room_first. Provide an appropriate caption
for the room (for example “Galactic Mail”).

6. Select the backgrounds tab. Click the menu icon to the right of where it says
<no background> and select the background from the pop-up menu.

7. Select the objects tab and place a number of asteroids and moons in the room.
(Remember that you can choose the object to place by clicking where it says “Object to
add with left mouse”). The Room Properties form should now look like Figure 3-9.

8. Close the Room Properties form by clicking the green checkmark in the top-left corner.

Figure 3-9. Here’s our first room.

That should give us something to look at, so let’s give it a try.

Saving and running the game:

1. Choose Save from the File menu (or click the disk icon). Save the game somewhere
where you can easily find it again (the desktop, for example).

2. Select Run normally from the Run menu. If all goes well, the game should then appear
in a new window.

Before continuing, double-check that everything is working the way it’s supposed to. Are
the moons and asteroids moving in different random directions? Do they reappear on the

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 49

6153CH03.qxd 3/21/06 4:42 PM Page 49

other side of the screen when they leave the room? Do the asteroids always pass behind the
moons? If any of these are not working, check that you have followed the instructions correctly.
Alternatively, you can load the current version from the file Games/Chapter03/galactic1.gm6 on
the CD.

Flying Around
This isn’t a very interactive experience yet, so let’s introduce some gameplay by bringing the
rocket into the game. We’ve already mentioned that we’ll make two rocket objects, but let’s
stop to consider why this is necessary. Our rocket has two different ways of behaving: sitting
on top of a moving moon with full control over the ship’s direction, and flying through space
with only limited control. Having two ways of controlling one object would involve a compli-
cated set of events and actions, but if we separate these behaviors into two different objects,
then it becomes quite simple. Provided that both objects look the same, the player will never
notice that their ship is actually changing from being a “flying rocket” object to a “landed
rocket” object at different stages of the game.

We also need two moon objects, as we want the landed rocket object to follow the path of
one particular moon around (the one it has landed on). Making it into a separate object will
allow us to single it out from the others in this way. As this second moon object will be almost
the same as the normal moon, we can take a shortcut and make a copy of the existing moon
object.

Creating the special moon object:

1. Right-click the moon object in the resource list, and select Duplicate from the pop-up
menu. A copy of the moon object will be added to the resource list and its properties
form is displayed.

2. Change the name to object_specialmoon. It is important that you use this exact name
(including the underscore) as we will use this to identify this object later on.

3. Set the Depth of this object to -5. This will guarantee that instances of this moon are
always in front of the other moons as it is lower than 0.

4. We will also make this moon responsible for starting the background music at the
beginning of the game. Add an Other, Game start event and include a Play Sound
action in it (main1 tab). Select the background music sound and set Loop to true so
that the music plays continuously.

5. Click OK to close the properties form.

Now open the first room and add a single instance of this new special moon to the level.
Run the game and the music should play. (You won’t notice any other difference because the
special moon should look and behave exactly like the other moons.)

Now we can make our two rocket objects. We’ll begin with the landed rocket, which needs
to sit on the special moon object until the player decides to blast off. We’ll use a Jump Position
action to make it follow the special moon’s position as it moves around the screen.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES50

6153CH03.qxd 3/21/06 4:42 PM Page 50

Creating the landed rocket object:

1. Create a new object called object_landed and give it the landed rocket sprite. Set the
Depth to -10 so that it appears in front of the moons and looks like it’s sitting on the
surface of the special moon.

2. Add a Step, End Step event to the new object. An End Step allows actions to be per-
formed immediately before instances are drawn at their new position on the screen.
Therefore, we can use this event to find out where the special moon has been moved to
and place the rocket at the same location—just before both of them are drawn.

■Note A Step is a short period of time in which everything on the screen moves a very small distance.
Game Maker normally takes 30 steps every second, but you can change this by altering the Speed in the
settings tab for each room.

3. Include the Jump Position action in the Actions list for this event. This action allows
us to move an object to the coordinates of any position on the screen. Type object_
specialmoon.x into the X value and object_specialmoon.y into the Y value. These indi-
cate the x and y positions of the special moon. Make sure that you type the names
carefully, including underscores and dots (i.e., periods or full stops) in the correct
positions. The action should now look like Figure 3-10.

Figure 3-10. We set the rocket to jump to the x and y positions of the special moon, so that
it will follow this moon around.

4. You might want to test the game now. Place one instance of the rocket at a random
position in the room and run the game. The rocket should jump to the position of the
special moon and stay on top of it as it moves around.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 51

6153CH03.qxd 3/21/06 4:42 PM Page 51

When you run the game, you will also notice that the rocket continually spins around
without any user input. This is because the rocket sprite contains an animation showing the
rocket rotating through 360 degrees. By default, Game Maker automatically cycles through a
sprite’s subimages to create an animation. However, this is not what is needed for this game—
we need Game Maker to select the appropriate subimage based on the direction the rocket is
moving in.

This requires a small amount of mathematics. There are 72 images representing a turn of
360 degrees, so each image must have been rotated by 5 degrees more than the last (because
360/72 = 5). Game Maker stores the direction of all objects in degrees, so it can work out which
rocket subimage to use by dividing the rocket object’s current direction by 5. Therefore we can
make the rocket face in the right direction by using this rule (direction/5) to set the current
subimage in a Change Sprite action.

Including a change sprite action in the landed object:

1. With the landed rocket Object Properties form open, include a Change Sprite action
(main1 tab) in its End Step event. Choose the landed rocket sprite from the menu and
type direction/5 into the Subimage property. direction is a special term that Game
Maker recognizes as meaning the direction that this instance is currently facing in.
Finally, set Speed to 0 to stop the sprite from animating on its own and changing the
subimage. Figure 3-11 shows how this action should now look.

Figure 3-11. Set the correct subimage in the sprite.

■Note This way of dealing with rotated images might seem rather clumsy, but many old arcade games
were made in a similar way so that each rotated image could include realistic lighting effects. Nonetheless,
the registered version of Game Maker contains an additional action to rotate a sprite automatically without
the need for subimages at all.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES52

6153CH03.qxd 3/21/06 4:42 PM Page 52

We can also make use of this special term for the object’s direction to add actions that
allow the player to control the direction of the rocket using the arrow keys.

Including keyboard events for the landed rocket object:

1. Add a Keyboard, <Left> event to the landed rocket object.

2. Include the Move Free action and type direction+10 in the Direction property. This
indicates that the current direction should be increased by 10 degrees. Set Speed to 0
because we don’t want the rocket to move independently of the special moon. This
action should now look like Figure 3-12.

Figure 3-12. Set the direction to equal itself plus 10.

3. Add a similar Keyboard event for the <Right> key. Include a Move Free action and type
direction-10 in the Direction property.

The last control we need for the landed rocket will allow the player to launch the rocket
using the spacebar. This control will need to turn the landed rocket object into a flying rocket
object, but we can’t make an action for this as we haven’t created the flying rocket object yet!
So we’ll make the flying rocket now and come back to this later.

Creating the flying rocket object:

1. Create a new object called object_flying and select the flying rocket sprite. Set Depth
to -10 to make sure that this object appears in front of moons.

2. Add an Other, Outside Room event and include a Wrap Screen action to wrap around
the screen in both directions.

3. Add an End Step event. Include a Change Sprite action, choose the flying rocket sprite,
type direction/5 in the Subimage property, and set the Speed to 0.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 53

6153CH03.qxd 3/21/06 4:42 PM Page 53

4. Add a Keyboard, <Left> event and include a Move Free action. We don’t want
the player to have too much control over the flying rocket, so type direction+2 in
Direction and set Speed to 6.

5. Add a Keyboard, <Right> event with a Move Free action. Type direction-2 in Direc-
tion and set Speed to 6.

The basic gameplay is nearly there now—just a few more events to tie up. First, the game
should end when the rocket hits an asteroid. Next, when the flying rocket reaches a moon, it
should turn into a landed rocket, and the moon should turn into the special moon (so that the
landed rocket can follow it). We achieve this using the Change Instance action, which basi-
cally turns an instance from one type of object into another. To return to our jelly comparison,
this is a bit like melting down the jelly from one instance and putting it into a new object
mold. Although the instance may end up as a completely different kind of object, it keeps
many of its original properties, such as its position on the screen and its direction. The fact
that these values remain the same is critical—otherwise the launch direction of the landed
rocket would get reset as soon as it turned into a flying rocket!

Adding collision events to the flying rocket object:

1. Add a Collision event with the asteroid object and include the Restart Game action
(main2 tab) in the Actions list. Later on we’ll include an explosion to make this more
interesting.

2. Add a Collision event with the moon object and include the Change Instance action
(main1 tab). Set the object to change into object_landed using the menu button, and
leave the other options as they are.

3. Include a second Change Instance action for changing the moon into a special moon
object. To make this action change the moon object (rather than the rocket), we need
to switch the Applies to option from Self to Other. This makes the action apply to the
other object involved in the collision, which in this case is the moon. Set the object to
change into object_specialmoon. Figure 3-13 shows the settings.

Figure 3-13. Change the other instance involved
in the collision into a special moon.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES54

6153CH03.qxd 3/21/06 4:42 PM Page 54

Finally, we can go back to the landed rocket object. This will need an event that changes it
into a flying rocket and deletes the special moon when the spacebar is pressed.

Adding a key press event to the landed rocket object:

1. Reopen the Object Properties form for the landed rocket by double-clicking on it in the
resource list.

2. Add a Key Press, <Space> event and include a Move Free action to set the rocket in
motion. Type direction in the Direction property (this keeps the direction the same)
and set Speed to 6.

3. Now include a Change Instance action and change the object into an object_flying.

4. Finally, we want to delete the special moon because it no longer needs to be visited.
Include a Destroy action and change the Applies to option to Object. Click the menu
button next to this and select the object_specialmoon, as shown in Figure 3-14.

■Caution Using the Object setting for Applies to performs an action on all instances of that kind of object
in the room. Deleting all of the special moon instances is fine in this case (as there is only one), but you will
need to think carefully about the effects this setting will have before using it in your own games.

That completes the second version of our game. Make sure you save it and check that it all
works as it should so far. You should now be able to rotate the rocket on a moon, launch it with
the spacebar, and steer through the asteroids to land on another moon. Moons should disap-
pear as you visit them, and the game should restart if you hit an asteroid. If something is not
working, then check the instructions again, or compare your version with the version on the
CD (Games/Chapter03/galactic2.gm6).

Figure 3-14. Include a Destroy action for the
special moon.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 55

6153CH03.qxd 3/21/06 4:42 PM Page 55

There are clearly a number of things still missing from the game, but the game is already
quite fun to play. In the next section, we will add a scoring mechanism and a high-score table,
as well as advancing the player to a new level once mail has been delivered to all the moons.

Winning and Losing
In this section we’ll put a bit more effort into what happens when the player wins or loses the
game. Let’s begin by making asteroids a bit more explosive!

An Explosion
To get this working, we’ll add a new explosion object and create an instance of it when the
rocket hits an asteroid. This will play the explosion sound when it is created and end the game
with a high-score table after the explosion animation has finished.

Adding an explosion object to the game:

1. Create a new object called object_explosion, and select the explosion sprite. Give it a
Depth of -10 to make it appear in front of other instances.

2. Add a Create event and include a Play Sound action (main1 tab) for the explosion
sound.

3. Add an Other, Animation End event. This event happens when a sprite reaches the
final subimage in its animation.

4. Include the Show Highscore action (score tab) in the Actions list for this event. To
make the high-score list look more interesting, set Background to the same as the
background for the game, set Other Color to yellow, and choose a different font
(e.g., Arial, bold). The action should now look like Figure 3-15.

Figure 3-15. You can spice up the high-score table.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES56

6153CH03.qxd 3/21/06 4:42 PM Page 56

5. Also include a Restart Game action to start the game again after the high-score table is
closed (main2 tab).

6. Click OK to close the object.

Next we have to change the behavior of the flying rocket when it hits an asteroid.

Editing the flying rocket object:

1. Reopen the properties form for the flying rocket object by double-clicking on it in the
resource list.

2. Select the Collision event with the asteroid by clicking on it once. Click once on the
Restart Game action and press the Delete key to remove it from the action list.

3. Include a Create Instance action (main1 tab) in its place, and set it to create the explo-
sion object. Make sure the Relative property is enabled so that the explosion is created
at the current position of the rocket.

4. Include a Destroy Instance action (main1 tab) and leave it set to Self so that the rocket
gets deleted. Click OK on the properties form to finish.

You might want to run the game now to see how it looks. Try colliding with an asteroid
and you should get an explosion followed by the high-score table. Unfortunately, you can’t
score any points yet, so let’s add this next.

Scores
If you’ve played the game quite a bit already, then you may have noticed a way of “cheating.”
You can avoid the risk of hitting asteroids by waiting for another moon to fly right next to your
own and then quickly hop between moons. The game can become a lot less fun once this
technique has been discovered, so our scoring system is designed to discourage the player
from playing this way. Although they receive points for delivering mail, they also lose points
for waiting on moons. This means that a player that takes risks by launching their rocket as
soon as possible not only will have the most enjoyable playing experience but will also score
the most points.

Editing game objects to include scoring:

1. Reopen the properties form for the special moon object and select the Game Start
event. Include a Set Score action with a New Score of 1000. This gives the player some
points to play with at the start. Close the properties form.

2. Reopen the properties form for the landed rocket and select the End Step event.
Include a Set Score action with New Score as -1 and the Relative option enabled. This
will repeatedly take 1 point off the score for as long as the player remains on a moon.
As there are 30 steps every second, they will lose 30 points for every second of hanging
around. Close the properties form.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 57

6153CH03.qxd 3/21/06 4:42 PM Page 57

3. Reopen the properties form for the flying rocket and select the Collision event with
the moon object. Include a Set Score action with a New Score of 500 and the Relative
option enabled.

4. Include a Play Sound action after setting the score and select the bonus sound.

Levels
At the moment, there is no reward for delivering all the mail. In fact, once all the moons are
removed, the rocket just flies through space until it collides with an asteroid! This seems rather
unfair, and it would be much better if the player advanced to a more difficult level. Making
multiple levels in Game Maker is as simple as making new rooms. We can use actions to move
between these rooms, and include more asteroids in the later levels to make them more diffi-
cult to play.

Let’s begin by creating the new levels. You’ll repeat these steps to make two more levels so
that there are three in total. You can always add more of your own later on.

■Note The order of the rooms in the resource list determines the order of your levels in the game, with the
top level being first and the bottom level last. If you need to change the order, just drag and drop them into
new positions into the list.

Creating more level resources for the game:

1. Right-click on a room in the resource list and choose Duplicate from the pop-up
menu. This will create a copy of the level.

2. Go to the settings tab and give the room an appropriate name (room_first,
room_second, etc.).

3. Switch to the objects tab, and add or remove instances using the left and right mouse
buttons.

4. Make sure that each level contains exactly one special moon and one instance of the
landed rocket.

In order to tell Game Maker when to move on to the next room, we have to be able to
work out when there are no moons left in the current one. To do this, we will use a conditional
action that asks the question “Is the total number of remaining moons equal to zero?” If the
answer is yes (or in computer terms, true), then a block of actions will be performed; other-
wise the answer is no (or false), and this block of actions is skipped. We’ll put this check in the
collision event between the flying rocket and the moon, so that players complete the level as
soon as they hit the final moon.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES58

6153CH03.qxd 3/21/06 4:42 PM Page 58

■Note All conditional actions ask questions like this, and their icons are octagon-shaped with a blue back-
ground so that you can easily recognize them.

Editing the flying rocket object to test for the number of remaining moons:

1. Reopen the properties form for the flying rocket and select the Collision event with the
moon object.

2. At the end of the current list of actions, include the Test Instance Count action
(control tab). Set the Object field to object_moon and the other settings will default to
how we need them (Number, 0 and Operation, Equal to). This is now equivalent to the
question “Is the total number of remaining moons equal to zero?” The form should
look like Figure 3-16.

Figure 3-16. We use the Test Instance Count action to count the number of moons.

3. Below this action we need to start a block. A block indicates that a number of actions
are grouped together as part of a conditional action. This means that all of the actions
in the block will be performed if the condition is true and none of them if it is not. Add
the Start Block action (control tab) directly below the condition to test the instances.

4. First, we will pause for a moment to give the player a chance to notice they have
reached the final moon. Include the Sleep action (main2 tab) and set Milliseconds to
1000. There are 1,000 milliseconds in a second, so this will sleep for 1 second.

5. We’ll award the player an extra bonus score of 1,000 points when they finish a level.
Include a Set Score action (score tab) with a New Score of 1000 and make sure that the
Relative option is enabled.

6. Include the Next Room action from the main1 tab to move to the next room. No prop-
erties need to be set here.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 59

6153CH03.qxd 3/21/06 4:42 PM Page 59

7. Finally, add the End Block action (control tab) to end the block of the conditional
action. The completed set of actions should now look like Figure 3-17. Note that the
actions in the block are indented so that you can easily see that they belong together.

Figure 3-17. Note that the actions in the block are indented.

It is time to try out the game again. Save and play the game to check that you can go from
one level to the next by visiting all the moons. You can also load this version of the game from
the file Games/Chapter03/galactic3.gm6 on the CD. However, if you complete the game you’ll
get an error message indicating that it has run out of levels. Don’t worry—this is something we
will fix in a moment, when we add some more finishing touches to the game.

Finishing Touches
To finish our game, we’ll add an opening title screen, a help screen, and a congratulatory mes-
sage upon completing the game. We’ll also include a few visual touches to add a little bit of
variety in the moons and asteroids.

A Title Screen
To create the title screen, we need a new object to display the name of the game and perform
some initial tasks. We’ll make it start the music and set the initial score, and then wait for the
player to press a key before taking them to the first level.

Creating a new title object resource for the game:

1. Create a new sprite called sprite_title using Title.gif.

2. Create a new object called object_title and give it this sprite. Set the Depth property
to 1 so that the moons go in front of it and the asteroids behind.

3. Add a Create event. This will contain the actions to start the music and set the score,
but we’ve already created these in the special moon object, so we can simply move
them over.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES60

6153CH03.qxd 3/21/06 4:42 PM Page 60

4. Open the special moon Object Properties form from the resource list and select the
Game Start event to view its actions.

5. Drag and drop the two actions from the special moon Game Start event into the
Create event of the title object. The Game Start event in the special moon should now
be empty, and so it will delete itself automatically when the Object Properties form is
closed. Do this now by clicking OK on the special moon’s properties form.

6. Add a Key Press, <Any key> event to the title object and include the Next Room action
in the action list for this event (main1 tab).

Next we need to create a new room for the title screen.

Creating a new title room resource for the game:

1. Create a new room called room_title and give it an appropriate caption. Also set the
room’s background in the same way as before.

2. Add a few moon and asteroid instances to the room (just for effect).

3. Place an instance of the new title screen object in the center of the room.

4. Close the room properties.

5. To make sure that this is the first room in the game, drag the new room to the top of
the list of rooms in the resource list.

Now quickly test the game to check that this all works correctly.

Winning the Game
We also need to stop the game from producing an error at the end and congratulate the player
instead. Similar to how we created the title room, we will create a finish room with a finish
object to display the message and restart the game.

Creating a new finish object resource for the game:

1. Create a new object called object_finish. It doesn’t need a sprite.

2. Add a Create event to the object and include the Display Message action in it (main2
tab). Set the Message to something like: “Congratulations! You’ve delivered all the
mail.”

3. Include a Set Score action, with a New Score of 2000 and the Relative option enabled.

4. Include the Show Highscore action, with Background, Other Color, and Font proper-
ties set as before.

5. Finally, include the Restart Game action.

Now that we have the object, we can create a room for it to go in.

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 61

6153CH03.qxd 3/21/06 4:42 PM Page 61

Creating a new finish room resource for the game:

1. Create a new room and place one instance of the new finish object inside it. As this
object has no sprite, it will appear as a blue ball with a red question mark on it. This
will not appear in the game, but it reminds us that this (invisible) object is there when
we are editing the room.

Now test the game to check that you can complete it—and that you get the appropriate
message when you do (in other words, not an error message!)

Adding Some Visual Variety
At the moment all the moons look exactly the same, and the asteroids even rotate in unison
as they move around the screen. However, with a different moon sprite and a little use of the
random command, we can soon change this.

Editing the moon and asteroid objects:

1. Open the properties form for the moon object and click the Edit button below the
name of the object’s sprite (this is just another way of opening the moon sprite’s
properties).

2. In the moon sprite’s properties, click Load Sprite and select Bases.gif instead of the
existing sprite. This sprite contains eight subimages showing different kinds of inhabi-
tations on each moon. Click OK to close the Sprite Properties form.

3. Back in the moon Object Properties form, select the Create event and include a new
Change Sprite action. Select the moon sprite and type random(8) in the Subimage
property. This will randomly choose one of the inhabited moon sprites. Also set Speed
to 0 to stop the sprite from animating on its own and changing the subimage.

4. Close the Action Properties and the moon Object Properties forms.

5. Include an identical Change Sprite action to the Create event of the special moon
object in the same way. There is no need to edit the moon sprite again, as both objects
use the same one.

6. Open the properties form for the asteroid object and include a new Change Sprite
action in its Create event as well. This time choose the asteroid sprite, and type
random(180) in the Subimage property. There are 180 images in the rotating asteroid
animation, so this will start each one at a different angle. Also type random(4) in the
Speed property so that asteroids rotate at different speeds.

Help Information
Once you have finished making a game, it is easy to sit back and bask in your own creative
genius, but there is one more important thing you must do before moving onto your next
game. It may seem blindingly obvious to you how to play your masterpiece, but remember
that it is rarely that obvious to a newcomer. If players get frustrated and stuck in the first few
minutes because they can’t figure out the controls, then they usually assume it is just a bad

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES62

6153CH03.qxd 3/21/06 4:42 PM Page 62

game rather than giving it the chance it deserves. Therefore, you should always provide some
help in your game to explain the controls and basic idea of the game. Fortunately, Game
Maker makes this very easy through its Game Information.

Adding game information to the game:

1. Double-click on Game Information near the bottom of the resource list.

2. A text editor will open where you can type any text you like in different fonts and
colors.

3. Typically you should enter the name of the game, the name of the author(s), a short
description of the goals, and a list of the controls.

4. When you’re done, click the green checkmark at the top left to close the editor.

That’s all there is to it. When the player presses the F1 key during game play, the game is
automatically paused until the help window is closed. Test the game one last time to check
that this final version works correctly. You can also load the final version of the game from
Games/Chapter03/galactic4.gm6 on the CD.

Congratulations
Congratulations! You’ve now completed your second game with Game Maker. You might want
to experiment with the game a bit further before continuing as there is much more you could
do with it. To start with, you could make more levels with faster-moving asteroids or smaller
moons to make it harder to land on them. We’ve included both larger planet sprites and
smaller planetoids for you to experiment with, so see what you can come up with.

This chapter has introduced you to more features of Game Maker. In particular you’ve
made use of events and actions to change sprites and objects. You’ve also used the Depth
property of objects to control the order in which the instances appear on the screen. This
chapter has also introduced variables for the first time, even though we haven’t called them
that yet. For example, the word direction is a variable indicating the current direction of an
instance. We also used the variables x and y that indicate the position of an instance. There are
many variables in Game Maker, and they are extremely useful. We will see plenty more of them
in the chapters to follow.

In the next chapter, we’ll continue to build on what you’ve learned so far by creating a
crazy action game that requires quick thinking to avoid being squished. It’s amazing what can
go on in a deserted warehouse . . .

CHAPTER 3 ■ MORE ACTIONS: A GALAXY OF POSSIBIL IT IES 63

6153CH03.qxd 3/21/06 4:42 PM Page 63

6153CH03.qxd 3/21/06 4:42 PM Page 64

Target the Player: It’s Fun
Being Squished

Our third game will be an action game that challenges players to make quick decisions
under pressure—and if they’re not fast enough then they’ll get squished! We’ll introduce some
new techniques for putting character animation into the game, and show how a controller
object can be used to help to manage the game.

Designing the Game: Lazarus
As usual we’ll need a description of our game. We’ve named it Lazarus, after the biblical char-
acter who was resurrected from the dead, because the game once had to be recovered from an
old floppy disk that had become corrupted! Always remember to make backups of your data!

Lazarus has been abducted by the Blob Mob, who are intent on bringing this harmless crea-
ture to a sticky end. They’ve imprisoned him at the Blobfather’s (sorry) factory, where they are
trying to squish him under a pile of heavy boxes. However, they’ve not accounted for Lazarus’s
quick thinking, as the boxes can be used to build a stairway up to the power button that halts
the machinery. Do you have the reactions needed to help Lazarus build a way up, or will the evil
mob claim one more innocent victim?

Each level traps Lazarus in a pit of boxes stacked up on either side of the screen to contain
him within the level. The arrow keys will move Lazarus left and right, and he will automatically
jump onto boxes that are in his way. However, he can only jump the height of a single box, and
stacks two or more boxes high will block his path. New boxes will periodically appear directly
above Lazarus’s current position and fall vertically down from the top of the screen until they
come to rest. This means that the player will be able to use Lazarus’s position to control where
boxes fall and build a stairway up to the power button.

There will be four different types of boxes, increasing in weight and strength: cardboard,
wood, metal, and stone. Falling boxes will come to rest on boxes that are stronger than them, but
will crush boxes that are lighter. The type of each box is chosen at random, but the next box will
be shown in the bottom-left corner of the window just before it appears. There will be a number
of increasingly difficult levels, with higher stairways to build, and boxes that fall faster. When
Lazarus gets squished, the level will restart to give the player another try. See Figure 4-1 for an
example of how a level will look.

65

C H A P T E R 4

6153CH04.qxd 3/8/06 2:18 PM Page 65

Figure 4-1. This shows how a typical level might look in the Lazarus game.

This may sound rather simple, but—as you’ll see—it actually makes for a very challenging
game! All the resources can be found in the Resources/Chapter04 folder on the CD.

An Animated Character
Our first task will be to create the Lazarus character. We’ll give him comical animations for
when he’s moving, jumping, and being squished to add to the appeal of the game. This will
require a number of different sprites and several different Lazarus objects as well. Like the dif-
ferent behaviors of the rocket in Galactic Mail, using several objects helps us to separate the
different animations of Lazarus in a simple way.

The animations for Lazarus have been designed around the size of the boxes in the game.
All the boxes are exactly 40✕40 pixels in size, so the animations that show Lazarus jumping
from one box to the next need to be as tall and wide as two boxes (80✕80 pixels). This means
we’ll be working with sprites of different sizes, and have to think carefully about where to
place the origin of each sprite so that they match up correctly. Remember that Game Maker
acts as if it is holding each sprite by its origin as it moves around the screen; so all the origins
need to be at the same position relative to Lazarus—regardless of the size of the sprite. This
should begin to make sense as you complete the steps that follow.

■Tip Setting the Smooth Edges property in the Sprite Properties form can often make sprites appear less
pixilated (blocky) in the game.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED66

6153CH04.qxd 3/8/06 2:18 PM Page 66

Creating the Lazarus sprite resources for the game:

1. Create a new sprite called spr_laz_stand using Lazarus_stand.gif from the Resources/
Chapter04 folder on the CD. This sprite is 40✕40 pixels and shows Lazarus in his “normal”
position. Remember that the origin for sprites defaults to the top-left corner (X and Y
both set to 0). We’ll leave this where it is and make sure that the origins of all the other
sprites match up with this position. Click the OK button to close the form.

2. Create another sprite called spr_laz_right using Lazarus_right.gif. This sprite is
80✕80 pixels and shows Lazarus jumping 40 pixels to the right (use the blue arrows to
preview the animation). As usual, the origin has defaulted to the top-left corner of the
sprite, but the top-left corner is further above Lazarus’s head than in the last sprite. To
match up with the previous sprite, we need to move the origin down by 40 pixels—so
set the Y value to 40. The properties form should now look like Figure 4-2.

Figure 4-2. The origin for this sprite has been moved to halfway down the left-hand side.

3. Create a spr_laz_jump_right sprite in exactly the same way using
Lazarus_jump_right.gif (with an X value of 0 and a Y value of 40).

4. Create a spr_laz_left sprite using Lazarus_left.gif. This sprite is also 80✕80 pixels
and shows Lazarus jumping 40 pixels to the left, but this time Lazarus starts on the
bottom-right side of the sprite. This means we need to move the origin 40 pixels down
and 40 pixels right to place it at the same relative position as before. Set both the X and
Y values to 40 and close the form.

5. Create a spr_laz_jump_left sprite in exactly the same way using
Lazarus_jump_left.gif (with an X value of 40 and a Y value of 40).

6. Create two more sprites called spr_laz_afraid and spr_laz_squished using
Lazarus_afraid.gif and Lazarus_squished.gif. These are 40✕40 pixels so there’s
no need to change the origin.

These are all the sprites we need for Lazarus, so our next step is to make some objects for
him. The main object will be the “normal” standing Lazarus. This is the most important one,
as it will react to the player’s keyboard input. The others are only there to play the different

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 67

6153CH04.qxd 3/8/06 2:18 PM Page 67

animations, after which they turn themselves back into the standing Lazarus. They will also
move Lazarus to a new position that corresponds to the final frame of the animation.

We have a bit of a chicken-and-egg situation here, as we did with the two types of rockets
in Galactic Mail. The “normal object” will need actions to turn it into “animating objects”
(which don’t exist yet) and the “animating objects” will need actions to turn them into “normal
objects” (which also don’t exist yet). So which objects do we create first? Well, the answer is
that we create the “normal object” but come back to creating its events and actions after we
have created the “animating objects”—crafty, eh?

Creating Lazarus object resources for the game:

1. Create a new object called obj_laz_stand and give it the standing Lazarus sprite.

2. Press OK to close the properties form (we will come back to it later).

3. Create a new object called obj_laz_right and give it the sprite that hops one box hori-
zontally to the right (spr_laz_right).

4. Add an Other, Animation End event. Remember that this event happens when a sprite
reaches the last subimage in its animation.

5. Include the Jump to Position action in this event (move tab). Set X to 40 and Y to 0,
and make sure that the Relative option is enabled. As the boxes are all 40✕40 pixels,
this will move Lazarus exactly one box to the right at the end of the animation.

6. Also include the Change Instance action (main1 tab) below this and select
obj_laz_stand as the object to change back into.

7. Click OK to close the object properties form.

8. Create another object called obj_laz_left and give it the sprite that hops one box hori-
zontally to the left (spr_laz_left). Repeat the same process as before (steps 4–7), but
set X to -40 for the Jump to Position action.

9. Create another object called obj_laz_jump_right and give it the sprite that hops up
one box diagonally to the right (spr_laz_jump_right). Repeat the process, setting X to
40 and Y to -40.

10. Add a final object called obj_laz_jump_left and give it the sprite that hops up one box
diagonally to the left (spr_laz_jump_left). This time, set X to -40 and Y to -40.

We may as well get the squished Lazarus object out of the way now too—even though
we won’t need it for a while. Once its gruesome animation finishes, this object will display a
message to tell the player that they’ve been squished. This isn’t because we think they are too
stupid to notice, but it provides a useful pause before starting the level again! We’re not going
to add lives or high scores in this game, so we’ll simply restart the level to give the player
another try.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED68

6153CH04.qxd 3/8/06 2:18 PM Page 68

Creating the squished Lazarus object resource:

1. Create an object called obj_laz_squished and give it the squished Lazarus sprite.

2. Add an Other, Animation End event and include the Display Message action (main2
tab) in it.

3. Type something like “YOU’RE HISTORY!#Better luck next time” into the message
properties. Note that putting the # symbol in the middle of the message will start a
new line from that point.

4. Finally, include the Restart Room action (main1 tab) after the message action and
press OK to close the object properties form.

Okay, so now we have these animation objects in place, we can continue making the main
standing Lazarus object we started on the previous page. One of its main jobs is to change into
the appropriate animating object when the player presses a key. The appropriate object
depends on whether Lazarus is standing next to any boxes. We’ll use a conditional collision
action to help Game Maker work this out for us.

Adding a right key event for the standing Lazarus object:

1. Reopen the properties form for the obj_laz_stand object by double-clicking it in the
resource list.

2. We’ll start by creating actions to handle moving to the right. Add a Key Press, <Right>
event and include the Check Collision action in it (control tab).

3. This action allows us to check that there would be a collision if we moved this instance
to a particular position on the screen. We need to make sure that Lazarus is on solid
ground before allowing him to move, as he shouldn’t be able to jump when he is stand-
ing on thin air! To check that this is the case, we set X to 0 and Y to 8 (slightly below his
current position), and enable the Relative option.

■Note Conditional collision actions have an Objects option, which allows us to choose between checking
for collisions with all objects or only ones marked as solid. We’re leaving this set to only solid, so we need to
remember to set the Solid property later when we create the box objects.

4. All of the remaining actions in this event depend on the previous condition (they only
need to be called if it is true). Consequently, we’ll need to include them all between
Start Block and End Block actions. Include the Start Block action now.

5. Now include the Check Empty conditional action. This conditional action is the
opposite of the last one: it checks that there wouldn’t be a collision if we moved to a
particular position on the screen. So to check that the space to the right of Lazarus is
free, set X to 40 (the width of a box), set Y to 0, and enable the Relative option.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 69

6153CH04.qxd 3/8/06 2:18 PM Page 69

6. Include the Change Instance action (main1 tab) and select the obj_laz_right object.
Select yes to Perform Events. This means that the Create event of the object we’re
turning into will get called (which is important later when we add sound effects).

■Note The Perform Events option controls whether the Destroy event of the current object and the Create
event of the new object should be called. This isn’t usually necessary so it does not call them by default.

7. Next include the Else action from the control tab (more about this in a moment).

8. Include another Check Empty conditional action directly after this. This should verify
that there are no boxes diagonally, up, and to the right of Lazarus. Set X to 40 and Y to
-40, and enable the Relative option.

9. Next include the Change Instance action and select the obj_laz_jump_right object.
Select yes to Perform Events.

10. Finally, include an End Block action to conclude the actions that should be performed
if Lazarus is on solid ground. The list of actions now should look like Figure 4-3.

Figure 4-3. Here are the actions for moving or jumping to the right.

This is the first time we’ve used the Else action, but it is often used alongside conditional
actions in this way. On its own, a conditional action only allows you to specify actions that
should be performed if a condition is true. However, in combination with Else, you can specify
different actions to be performed if that same condition is not true. This has many uses, but in
this situation it allows us to ask sequences of questions like this:

Is there solid ground beneath Lazarus’s feet? Yes. Well, is there a free space to the right of

Lazarus? No—there’s a box in the way. Okay, well, is there a free space on top of that box

then? Yes—let’s jump on top of it.

This is just one possible outcome, but our actions provide outcomes for four different sit-
uations: not moving when falling through the air; moving horizontally to the right when no
boxes are in the way; jumping diagonally to the right when a single box is in the way; and
doing nothing at all when more then one box is in the way. You can think of this action list as
reading something like this:

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED70

6153CH04.qxd 3/8/06 2:18 PM Page 70

If the position below has something solid in it, then read the next sentence. If the

position to the right is collision free, then change into object obj_laz_right; else, if the

position diagonally right is collision free, then change into object obj_laz_jump_right.

Before continuing, go through the actions step by step in your head and try to work out
how you end up with each of these different outcomes (move right, move diagonally right, and
no movement). When you’re happy that this makes sense, we’ll move on and do the same
thing for the left arrow key.

■Note Like other conditional actions, the Else action can be used with or without blocks. If blocks are not
used, then the Else only affects the action that immediately follows it.

Adding a left key press event to the standing Lazarus object:

1. Add a Key Press, <Left> event and include the Check Collision action. Set X to 0 and Y
to 8, and enable the Relative option (this checks below).

2. Include a Start Block action.

3. Include the Check Empty conditional action (control tab) with X set to -40, Y set to 0,
and the Relative option enabled (this checks left).

4. Next, include a Change Instance action (main1 tab) and select obj_laz_left. Choose
yes to Perform Events.

5. Now include Else action from the control tab.

6. Include a Check Empty action with X set to -40, Y set to -40, and Relative enabled (this
checks diagonally left).

7. Include a Change Instance action and select the obj_laz_jump_left object. Choose yes
to Perform Events.

8. Finally, include an End Block action to finish the block of actions.

Although our keyboard events stop Lazarus from jumping in mid-air, there aren’t yet any
events to make him fall down to the ground when he is. We’ll get Game Maker to test for this in
a Step event so that it is continually checking to see if he should be falling. However, we need
to think carefully about how far he should fall in each step. The amount of movement in each
step will determine how fast he falls, but it will make our job much simpler if we also choose a
number that divides exactly into 40 (the height of the boxes). Can you think why?

Let’s imagine that we chose a number that doesn’t divide into 40, like 12. Lazarus would
have fallen 12 pixels after one step, 24 pixels after two steps, 36 pixels after three steps, and
48 pixels after four. At no stage has Lazarus fallen the exact 40 pixels needed to fall the height
of one box; he is either 4 pixels too high (at 36 pixels) or 8 pixels too low (at 48 pixels). This
means he would either end up floating above boxes, or jammed someway into them! Using
any number that divides into 40 will avoid this problem (1, 2, 4, 5, 8, 10, 20, or 40), so we’ve
chosen a value of 8 because it produces a sensible-looking falling speed.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 71

6153CH04.qxd 3/8/06 2:18 PM Page 71

Adding a step event to the standing Lazarus object to make it fall:

1. Add the Step, Step event to the standing Lazarus object. We are using the “standard”
Step event as we don’t really care exactly when Lazarus falls, provided he does.

2. Include a Check Empty action in the Step event, setting X to 0 and Y to 8, and enabling
the Relative option. This action checks for empty space just below Lazarus.

3. Include a Jump to Position action directly after it so that it will only be performed if
the Check Empty condition is true. We need to give it the same relative settings as
before, so that it moves into the empty space. Set X to 0 and Y to 8, and enable the
Relative option.

A Test Environment
We’ve gone through quite a lot of steps so far without being able to test our work, so before
going any further let’s quickly create a test level for Lazarus to move around in. There are no
falling boxes yet, so we’ll have to create some random stacks of our own to check if the move-
ment is working correctly. We’ll create just one box type to do this: the boxes that make up the
walls of the pit.

Creating the wall object resource for the game:

1. Create a new sprite called spr_wall using Wall.gif. Disable the Transparent option as
the walls for this level need to look completely solid.

2. Create a new object called obj_wall and give it the wall sprite. Enable the Solid option
so that the checks in the standing Lazarus object can detect the wall.

3. Create a new room called room_test and provide a caption in the settings tab.

4. Look in the toolbar at the top of the Room Properties form and set both Snap X and
Snap Y to 40. All our boxes are 40✕40 pixels, so this will help us to place them neatly on
the level. The grid in the room will change accordingly.

5. Switch to the objects tab again and select the wall object to place. Create a level with a
number of boxes that form flat areas and staircases (remember, you can hold the Shift
key to add multiple instances). Also add one instance of the standing Lazarus object.
Try to make it look something like Figure 4-4.

■Note Sometimes when you close a room form you get a warning message saying that there are
instances outside the room. This can happen when you accidentally move the mouse outside the room
area while adding objects. You will be asked whether these instances should be removed—simply click
the Yes button.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED72

6153CH04.qxd 3/8/06 2:18 PM Page 72

Figure 4-4. Your test level should look something like this.

At last, you can finally run the game! Test the character’s movement in all the possible sit-
uations and make sure that he behaves the way you would expect. If something isn’t working
right, then check your steps carefully, making sure that you enabled the Relative option in all
the actions where it was indicated. Alternatively, you can load the current version from the file
Games/Chapter04/lazarus1.gm6 on the CD.

Falling Boxes
Our next goal is to create the falling boxes that both threaten the player and provide the
means for their escape. As indicated in the game description, there will be four types of boxes
in the game: stone boxes, metal boxes, wooden boxes, and cardboard boxes. As you would
expect, stone boxes are the heaviest and cardboard boxes are the lightest. Falling boxes are
chosen at random and heavier boxes will crush lighter boxes as they fall—making it harder to
build a stairway out of the pit. However, to give the player a chance to think ahead, the next
box will be shown in the corner of the screen while the last box is still falling.

Each box will need to change its behavior three times in the game: first it appears in the
corner, as the “next box”; then it falls down the screen until it lands on another box; and finally
it forms a stationary obstacle for Lazarus to negotiate. As you may have guessed, we will
achieve this by creating three different objects for each box: one for each behavior. We will
start by creating the stationary boxes, as they are the simplest to make. First, though, we need
to create some new sprites.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 73

6153CH04.qxd 3/8/06 2:18 PM Page 73

Creating new box sprite and object resources for the game:

1. Create sprites called spr_box_stone and spr_box_card using StoneBox.gif and
CardBox.gif. Disable the Transparent option on both these sprites.

2. Now create sprites called spr_box_metal and spr_box_wood using MetalBox.gif and
WoodBox.gif. This time leave the Transparent option enabled, as these two sprites
have a small amount of transparency around the edges.

3. Create a new object called obj_box_stone and give it the sprite for the stone box.
Set the Solid option so that it is detected in collision tests.

4. Repeat the previous step to add objects for obj_box_metal, obj_box_wood and
obj_box_card.

Next we’ll make the falling boxes. These need to start at the top of the screen, directly
above Lazarus’s horizontal position, so we’ll make use of the x variable of the standing Lazarus
object to tell us where that is. Once it starts falling, we’ll give it a speed of 5 because that divides
exactly into 40 (important for the same reasons as before) and it is slightly slower than the
speed that Lazarus falls (otherwise a box might squish Lazarus in the air!). When a box collides
with a heavier box, it turns into a stationary box, but when it collides with a lighter box, it
destroys that box and continues to fall.

Creating falling box objects for the game:

1. Create a new object called obj_falling_stone, give it the sprite for the stone box, and
select the Solid option as before.

2. Add a Create event and include a Jump to Position action in it. Type the variable
obj_laz_stand.x (the horizontal position of Lazarus) into X and set Y to -40. This will
make the box start above Lazarus, just out of view at the top of the screen.

3. Next include the Move Fixed action, using a downward direction and a Speed of 5.

4. Add a Collision event with obj_laz_stand and include a Change Instance action in it.
Change the Applies to option to Other, so that it changes Lazarus rather than the box.
Select the obj_laz_squished and select yes to Perform Events.

5. Add another Collision event, this time with obj_wall. This needs to stop the box
moving, so include a Move Fixed action and select the middle square with a Speed of 0.
Also include a Change Instance action, and select the stationary box obj_box_stone.

6. Add a third Collision event with obj_box_stone and include the same two actions as
the Collision event with the wall above (you could copy them).

7. Add a fourth Collision event with obj_box_metal. The metal box is lighter than the
stone box so it must be crushed. Include a Destroy Instance action and select the
Other object.

8. Add fifth and sixth Collision events with obj_box_wood and obj_box_card, both includ-
ing identical Destroy Instance actions as we did in step 7 to destroy the Other box in
the collision.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED74

6153CH04.qxd 3/8/06 2:18 PM Page 74

Okay, that’s one of the falling boxes. The other falling boxes are similar but need to
behave slightly differently when they collide with different kinds of boxes.

9. Create the remaining three falling objects for the other types (obj_falling_metal,
obj_falling_wood, and obj_falling_card). Repeat steps 1–8 for each one, using step 7
when a box crushes another box and step 5 when a box stops moving. Refer to Table 4-1
when deciding which boxes should crush each other.

Table 4-1. Box Materials That Should Crush Each Other

Material Material(s) That It Crushes

Stone Metal, Wood, and Card

Metal Wood and Card

Wood Card

Card None

Phew! That was quite a lot of work (28 events and 46 actions), made worse by the fact that
we had to repeat the same steps over and over again. In Chapter 6 we will see that there is
actually a quicker way to do this kind of thing using parents. Nonetheless, although this might
have seemed like a lot of effort, it may help you to appreciate the work that goes into a com-
mercial game. They usually take at least 18 months to program and require hundreds of
thousands of lines of code to make them work!

Now let’s set about creating the final set of boxes that appears in the bottom-left corner
to show the player which box is coming next. This adds an important element of gameplay,
allowing the player to plan ahead and adapt their strategy based on where it would be most
useful for the next box to fall. It requires quick thinking and takes a bit of practice, but it helps
to create a challenging and rewarding game. The “next box” objects are very simple to make,
but we’ll need four of them again—one for each type of box.

Creating next box object resources for the game:

1. Create a new object called obj_next_stone, give it a stone box sprite, and enable the
Solid option. That's it, so click OK to close the object properties.

2. Create objects for obj_next_metal, obj_next_wood, and obj_next_card in the same way.

I’m sure you’ll be relieved to find out that’s all the boxes we need to create for this game!
However, while the falling boxes have actions to turn them into stationary boxes, there are no
actions yet for turning next boxes into falling boxes, or creating next boxes in the first place.
That’s because we are going to create a controller object to do this. A controller object is usu-
ally an invisible object (it doesn’t have a sprite), which performs important actions on other
objects. Our controller object will use a Step event to continually check if there is a falling box
on the level. If not, then it will turn the current next box into a falling box and create a new
next box. In this way, the controller object will maintain a constant cycle of new and falling
boxes until the level is completed—or the player gets squished!

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 75

6153CH04.qxd 3/8/06 2:18 PM Page 75

Creating a controller object resource for the game:

1. Create a new object called obj_controller and leave it without a sprite.

2. Add a Step, Step event and include the Test Instance Count conditional action
(control tab). This counts the number of instances of a particular object on the level
and tests it against a value. Choose the obj_falling_stone object; leave Number as 0
and Operation as Equal to. This creates a condition that is true if the number of falling
stone box instances on the level is equal to 0 (i.e., there aren’t any!).

3. Include three more Test Instance Count conditional actions to check if there are no
instances of obj_falling_metal, obj_falling_wood, and obj_falling_card in the same
way. When combined, these conditional actions will make sure that there are no falling
boxes of any kind on the level before creating a new one.

4. Include a final Test Instance Count action for the obj_laz_stand object, but set
Number to 1 and the Operation to Equal to. This makes sure that there is an instance
of the standing Lazarus object on the level, rather than any of the animating objects.

5. Include a Start Block action. This will group together all the actions that need to be
performed to create the new box.

6. Include a Change Instance action and select Object for Applies to, so that it changes all
instances of one kind of object on the level into another. Set Object to obj_next_stone,
Change Into to obj_falling_stone, and select yes to perform events (the Create event
for the falling box needs to be performed to start it in the correct position). This will
turn any stone next boxes into stone falling boxes. The action should now look like
Figure 4-5.

Figure 4-5. Change the next box into a falling box.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED76

6153CH04.qxd 3/8/06 2:18 PM Page 76

7. However, because the type of box will be chosen randomly, we don’t know what kind of
next box object the next box will actually be. To cover all bases, add three more Change
Instance actions to change obj_next_metal objects into obj_falling_metal objects,
obj_next_wood into obj_falling_wood, and obj_next_card into obj_falling_card in the
same way.

8. Next we need to randomly create one of the next box objects. Include a Create Random
action (main1 tab) and select the four different next box objects. Set X to 0 and Y to
440, and leave Relative disabled. Remember that when Relative is disabled, X and Y are
measured from the top-left corner of the screen. These coordinates will therefore put
the new next box where it should be in the bottom-left corner of the screen. The action
should now look like Figure 4-6.

9. Finally, include an End Block action to conclude the block of actions that are depend-
ent on all the conditions above them being true.

Figure 4-6. The Create Random action allows us to randomly create one of the four next
box objects.

This long list of conditional actions means that the block of actions will only be performed
if all these conditions are true. In other words, if there are no instances of obj_falling_stone
and no instances of obj_falling_metal and no instances of obj_falling_wood and no
instances of obj_falling_card and one instance of obj_laz_stand, then Game Maker will
create a new box.

You might have thought it a bit odd that we need to check that there is a standing Lazarus
object as part of our conditions for creating new boxes. If you look back at one of the Jump To
Position actions in the Create events of the falling boxes, you will remember that we use the
obj_laz_stand.x variable to start the object in the correct position. However, Game Maker
can’t provide that object’s x position if it has turned into an animation object, so it will create
an error in the program. So to avoid this possibility we check that there’s a standing Lazarus
instance on the level before creating new falling boxes.

Now it’s finally time to test our new objects.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 77

6153CH04.qxd 3/8/06 2:18 PM Page 77

Editing the test room to add new instances:

1. Reopen the test room we created by double-clicking on it in the resource list.

2. Remove all the extra wall instances so that it leaves just a pit with walls on both sides
and across the bottom.

3. Add one instance of the controller object into the room (easily forgotten!)

■Note When an object has no sprite, it shows up in the Room Properties form as a blue ball with a red
question mark. This will not appear in the game, but reminds us that this (invisible) object is there when
we are editing the room.

Now run the game and test it carefully. Make sure that the box that appears in the bottom
left is actually the box that falls down the screen next and check that heavier boxes are crush-
ing lighter ones. As usual, if there are any problems, then carefully check the instructions or
load the game from Games/Chapter04/lazarus2.gm6 on the CD.

Finishing Touches
We now have all the basic ingredients of the game in place and there are just a few more things
to do before we could call it a finished game. There’s no way to complete a level yet, so we
need to include the stop buttons that will halt the boxes and move the player onto the next
level. Some sound effects would also be nice—as would a background and a title screen. We’re
obviously going to need a few different levels, too. However, before all that we’re going to add
something cool that will endear the player to Lazarus’s plight a little more.

No Way Out!
You may have noticed that there’s another animation we haven’t used yet that shows Lazarus
looking afraid. We’re going to show this animation when he’s in a hopeless situation and
knows he is about to meet his end. However, rather than create a new object for this
animation like we did with the others, we’re just going to change the sprite of the standing
Lazarus object when he becomes afraid. We can do this because “being afraid” does not need
any actions of its own: it has exactly the same behavior as standing—it just looks different.
We’re going to control this animation within the Step event, so that the correct animation is
chosen at any point in time. We will use Check Collision actions to detect if Lazarus is sur-
rounded by stacks of boxes two or more high on both sides. The Check Collision action
performs actions only when there is a collision at a particular point. In this way, we can
detect whether Lazarus is trapped on all sides and set his animation to be afraid.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED78

6153CH04.qxd 3/8/06 2:18 PM Page 78

Editing the standing Lazarus object to detect for being trapped:

1. Reopen the standing Lazarus object and select its Step event, so that you can see the
existing actions for this event.

2. Include the Check Collision conditional action (control tab) below the last action in
the list. Set X to 40 and Y to 0, and enable the Relative option. This checks for a box to
the right of Lazarus.

3. Include another Check Collision action with X set to 40, Y set to -40, and the Relative
option enabled. This checks for a box diagonally to the right of Lazarus.

4. Include two more Check Collision actions: one with X set to -40 and Y set to 0, and the
other with X set to -40 and Y set to -40. Both should have the Relative option enabled.
These check for boxes to the left and diagonally to the left of Lazarus.

5. Finally, include a Change Sprite action, using the “afraid Lazarus” sprite. This will now
only happen if the four conditional actions above are true and Lazarus is literally
boxed in.

Hopeless as this situation may sound, it is actually possible for Lazarus to be saved from
this predicament by a heavy block crushing the stack of boxes on one side of him. If this hap-
pens, then we would like Lazarus to stop being afraid. We could include conditional actions to
check for this happening and change his sprite back to normal. However, we can achieve the
same effect simply by including a Change Sprite action at the very beginning of the list of
actions for this event. Changing into the standing Lazarus sprite by default will make the
sprite revert back to normal if he stops being trapped.

Editing the standing Lazarus object to detect for being freed:

1. Select the Step event for the standing Lazarus object so that you can see the existing
actions for this event.

2. Include a Change Sprite event at the very beginning of the list of actions (you can drag
actions about if it falls in the wrong place). Set it to change into the standing Lazarus
sprite.

You might want to play the game now and make sure that this new feature is working cor-
rectly. Features like this don’t change the gameplay directly, but add to the playing experience
and make the game more entertaining to play.

Adding a Goal
The player’s goal is to reach one of the stop buttons, so that it halts the machinery and stops
dropping the boxes. However, in practice all the buttons really need to do is move the player
onto the next level when the standing Lazarus object collides with them. If there are no more
rooms, then it will show a completion message and restart the game.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 79

6153CH04.qxd 3/8/06 2:18 PM Page 79

Creating a new button object resource for the game:

1. Create a new sprite called spr_button using Button.gif.

2. Create a new object called obj_button and give it the button sprite. Set Depth to 10 so
that it appears behind other objects.

3. Add a Collision event with the standing Lazarus object and include a Sleep action in it
(main2 tab). Set Milliseconds to 1000 (1 second) and Redraw to true. This should give
a brief pause for the player to realize they have completed the level.

4. Include a conditional Check Next action (main1 tab).

5. Include a Next Room action (main1 tab).

6. Include an Else action followed by a Start Block action.

7. Include a Display Message action (main2 tab) and set Message to something like
“CONGRATULATIONS#You have completed the game!”

8. Include a Different Room action and set New Room to the first room (which is the
only room at the moment).

9. Finally, include an End Block action and close the object properties.

10. Edit your test room and add a stop button on either side at the top of the pit.

Starting a Level
At the moment, boxes start falling as soon as the player enters the level, leaving them with no
time to gather their thoughts and prepare their strategy. We’re going to help them out by creat-
ing a starter object that displays the title for a couple of seconds before changing itself into the
controller object and starting to drop boxes.

Creating a new starter object resource for the game:

1. Create a new sprite called spr_title using Title.gif.

2. Create a new object called obj_starter and give it the title sprite.

3. Add a Create event and include a Sleep action in it. Set Milliseconds to 2000, for a wait
of two seconds.

4. Include the Change Instance action and select the controller object. Close the object
properties.

5. Edit your test room, and remove the controller object using the right mouse button.
Add the starter object at an appropriate place instead.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED80

6153CH04.qxd 3/8/06 2:18 PM Page 80

■Note You may have noticed that the title doesn’t appear on the first level when you run the game. This is
because the starter object’s Create event is executed before the window appears, so it has already turned
into a controller object by the time we see the room. This can be remedied using an Alarm action to add a
delay, but we won’t worry about this for now, and we’ll come back to alarms in Chapter 6.

Sounds, Backgrounds, and Help
It’s about time we made the game feel a bit more professional by including sound effects and
music in the game. This is quite simple and you can probably handle most of this on your own
by now, but here are some pointers to help you on your way:

1. All the sound resources can be found in the Resources/Chapter04 folder on the CD.

2. You’ll need to add sounds for Music.mp3, Wall.wav, Crush.wav, Squished.wav, Move.wav,
and Button.wav and play them at the right times using the Play Sound action
(main1 tab).

3. A good place to start playing the music would be in a new Game Start event for the
controller object. You’ll find the Game start event in Other events. Don’t forget to set
Loop to true in the Play Sound action to make the music loop forever.

4. You’ll need to add crush or wall sound effects to the existing Collision events between
falling box objects and stationary box objects.

5. Add a new Create event for the squished Lazarus object, and play the squished sound
effect there. This will save you the trouble of putting it in each of the four collision
events between falling boxes and Lazarus.

6. Adding Create events to play the move sound effects would also be a good way of
handling the four moving Lazarus objects.

7. Finally, you’ll need to play the button sound effect in the Collision event between the
button and Lazarus.

Test the game and make sure all the sound effects are playing in the correct place. If you
don’t hear a sound when moving around, check that you set Perform Events to yes in the
Change Instance actions that change into the animating objects. If you didn’t, then Game
Maker won’t perform the Create events that contain the sound effects.

A backdrop to the levels would also improve the look of the game, and we should put
together some kind of help text for the player too.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 81

6153CH04.qxd 3/8/06 2:18 PM Page 81

Creating a background resource and Game Information:

1. Create a background using Background.bmp from Resources/Chapter04 on the CD.

2. Reopen the properties form for the room and select the backgrounds tab. Select the
new background from the menu halfway down on the left.

3. Double-click on Game Information in the resource list and add a help text for the
game. Remember to include the name of the game and who it was created by (you),
along with a short description of the aims and controls.

Levels
All that is left now is to create a variety of levels for your game. We talk about level design in
much more detail in Chapter 8, but it’s probably best to start with shallow pits and buttons on
each side to keep things fairly easy. However, as the levels progress they can become as deep
and narrow as you like! Making the floor of the pit higher will make the level harder, as the
player has less time to react to the falling boxes. You could also place stationary boxes in
unhelpful places or place the buttons in mid-air to vary the challenge. One sure way to make
the game more challenging is to increase the Speed setting on the settings tab for each level.
This controls the number of steps per second on each level. It defaults to 30 steps per second,
but higher numbers will make the game faster and harder and lower numbers will make it
slower and easier.

Now it’s up to you to create some interesting levels for the game. Remember that duplicat-
ing rooms will save you a lot of work, so right-click on the room in the resource list and select
Duplicate from the pop-up menu. Once you’ve made your levels, let someone else try to play
them and see how difficult they find it. Game designers often find their games very easy
because they have played them so much, but it is often much harder for everyone else. This
is something you should always try to bear in mind when designing your games.

One very last thing: you may find it helpful to add a cheat in your game that allows you to
skip between levels. You can do this as follows.

Editing the controller object to add cheats:

1. Open the properties form for the controller object.

2. Add a Key Press, <N> event and include the Next Room action.

3. Add a Key Press, <P> event and include the Previous Room action.

Good luck, and don’t forget to remove these cheats when the game is finally finished!

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED82

6153CH04.qxd 3/8/06 2:18 PM Page 82

Congratulations
You’ll find the final version of the game in the file Games/Chapter04/lazarus3.gm6 on the CD.
You might want to extend the game a bit further by adding opening and closing screens, or
adding a scoring system to the game so that players can compete for the highest score. If
you’re feeling particularly adventurous, why not try adding some bonuses that sometimes
appear when boxes are crushed by each other? One of these could even transform all the
stationary boxes into stone boxes—or card boxes if you’re feeling mean!

By making this game, you have learned how to animate characters, both by creating dif-
ferent objects and by switching sprites. You have also seen how to use a controller object to
manage the game, plus you’ve learned how to use Else actions to provide extra control over
the outcome of conditional actions. In fact, you’ve learned a lot about Game Maker over these
past few chapters, and it’s about time we gave you a bit of a break. With this in mind, the next
chapter is all about game design and you won’t have to go near events and actions again until
Chapter 6. In the meantime, we’ll be thinking more carefully about the designs behind the
games we’ve made so far, and we’ll be exploring what makes them fun to play.

CHAPTER 4 ■ TARGET THE PLAYER: IT ’S FUN BEING SQUISHED 83

6153CH04.qxd 3/8/06 2:18 PM Page 83

6153CH04.qxd 3/8/06 2:18 PM Page 84

Game Design: Interactive
Challenges

Once you’ve caught the game-making bug, then it’s only a matter of time before you’ll want
to start designing your own games. There’s nothing more satisfying than realizing your creative
ideas and seeing other people enjoy them, and that’s precisely what making games is all
about. We don’t want you to feel that you have to finish this book before trying out your own
ideas—have a go whenever you feel ready, as you can always come back for more knowledge
and ideas when you need them. Nonetheless, there is more to designing a good game than
having a cool idea for a character or story, so these design chapters are here to provide some
helpful advice for designing your own projects.

What Makes a Good Game?
We all know when we’re playing one; we become completely absorbed by it and the hours fly
by in no time at all, but how do you create a game like that? Well, unsurprisingly there’s no for-
mula to guarantee success—otherwise everyone would be doing it! However, there are some
general principles that can help you to create better games by thinking more deeply about the
way that games work. To become a good game designer, you need to learn to see beyond the
surface features of games and consider what makes them fun at a basic level. This is some-
thing that takes time and practice, but we’ll try to give you a taste of what we mean. Think
about a particularly good section of your favorite game for a moment. Visualize where it is set,
what your character is doing, and how it is interacting with the other characters and objects in
the game. We’re going to take fighting giant squids in Zelda: Wind Waker as an example:

The skies turn black and there is a crack of thunder as a giant squid rises from the sur-

face of the ocean and towers over Link’s tiny boat. A whirlpool forms around the

monster’s enormous body and the boat begins to circle helplessly around it in the cur-

rent. The music reaches fever pitch and Link’s only hope is to destroy all of the squid’s

bulging eyes with his boomerang before he is inevitably dragged down to a watery grave!

Now this next part may seem a little strange: imagine that something has gone wrong
with your PC or console and all the characters and objects in the game have turned into col-
ored cubes! The music and sound effects have stopped too, but everything else is working just
the way it always did. Now try to visualize your scene again:

85

C H A P T E R 5

6153CH05.qxd 3/24/06 4:09 PM Page 85

A giant pink cube appears in front of my brown cube and I begin circling around it,

gradually getting closer on each turn. There are eight white cubes attached to the pink

cube—all of which must be destroyed before I get too close. To do this I must target white

cubes in my line of sight and launch a yellow cube to fly out and destroy them. The

yellow cube then returns back to me, and I can target and launch it again.

Now here’s the question: would the cube version of the game still be fun to play? Well, it
certainly won’t be as much fun to play, since it has lost most of its original atmosphere and
emotional involvement. However, for good games (like Zelda), some of the gameplay that
makes it fun to play would still be there. It may look ridiculous—and you definitely wouldn’t
buy it like that—but part of the game’s original magic remains.

Not quite convinced? Okay, take a look in the Games/Chapter05 folder and play the exam-
ple games, evil_squares.gm6, galactic_squares.gm6, and lazarus_squares.gm6. These are the
three games you’ve already made but with simple shapes and sound effects, instead of the
usual backgrounds, characters, and music. Give each game a chance and you’ll soon see that
there is still fun to be had once all the pretty graphics, characters, and stories have been com-
pletely stripped away (see Figure 5-1). Once you’re convinced, read on . . .

Figure 5-1. Galactic Squares is not very pretty, but it’s still fun to play.

Game Mechanics
Okay, so good games are still playable even after all the fancy graphics and sound effects have
been removed, but what creates this gameplay? Game developers call it the game mechanics:
the basic rules and interactions that make a game fun to play. Understanding game mechanics

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES86

6153CH05.qxd 3/24/06 4:09 PM Page 86

is probably the most important part of becoming a good game designer. Sure, creating appeal-
ing characters and stories is really important too, but they need to be combined with solid
game mechanics to create a good game. Think of game mechanics as the engine of a car and
the graphics, characters, and storyline as the bodywork and finishing. A rusty old wreck with a
Formula One engine may not win the Grand Prix, but it stands more chance than a Formula
One car with a rusty old engine!

Of course, the best games combine great game mechanics with superb graphics, believ-
able characters, spectacular music, and compelling storylines. However, these other aspects
are not unique to computer games, and there are plenty of books about filmmaking, story-
telling, music, and artwork that cover these topics far better than we could. Therefore, these
design chapters will focus on the core skill that distinguishes game designers from designers
of other forms of entertainment: game mechanics.

Interactive Challenges
What’s the difference between a film, a toy, and a game? It might sound like the start of a bad
joke, but it’s actually a question that highlights the two main features that make games special
as a form of entertainment. The most obvious difference between films and games is that
games are interactive—players have some control over the outcome of games, but film audi-
ences do not. Toys (like train sets, for example) are also interactive, as players have control
over what they want to happen when they play with them. However, toys don’t provide chal-
lenges for the player in the same way that games do. A player can create their own challenges
using a toy (like deciding to race trains), but those challenges have to be created by the player
and are not part of the toy. A game normally comes with its own set of challenges that the
player must overcome in order to win the game.

So you can think of games as being “interactive challenges,” therefore it’s easy to deduce
that both interaction and challenge are key elements of game mechanics. For the remainder of
this chapter, we’ll look at the various ways these two elements improve the game mechanics
of your designs and make them more fun to play.

Game Genres
We often group games into different genres, and one way of doing this is to look at the types of
interactions and challenges that different kinds of games provide. Games are evolving all the
time, so there will never be a final list of genres that everyone agrees on. Nonetheless, we have
made our own list of the main genres. As you read each one, try to distinguish the role of the
game mechanics from the part that the characters, stories, and graphics play in the experience
of that genre.

• Action games (e.g., sports, combat, platform, racing) usually involve fast and furious
interactions with lots of physical challenges that leave little room for mistakes.

• Simulator games (e.g., flight sims, racing sims) usually involve realistic interactions
and physical challenges with no room for mistakes at all.

• Strategy games (e.g., war games, puzzle games, god games) often involve slow or turn-
based interactions with long-term intellectual challenges that involve planning and
organization.

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES 87

6153CH05.qxd 3/24/06 4:09 PM Page 87

• Adventure games (e.g., point-and-click) usually let players interact at their own pace,
providing short-term puzzle-based challenges and long-term story-led challenges.
These challenges are often impossible to fail if you keep trying.

• Role-playing games (e.g., online RPGs) usually provide slower interactions with long-
term story-led challenges. However, these are often less important to the player than
the story and challenges that the player creates for themselves while developing their
character.

Of course, most games don’t fall neatly into one genre and may combine several kinds
of interactions in one game. Nonetheless, a game designer does need to consider players’
expectations of a particular genre; a role-playing game that requires lightning reflexes or a
turn-based shoot-em-up might not go down too well! It’s also worth remembering that new
genres are only created when rules and conventions are broken, and the great games of the
future are unlikely to follow the same conventions as today.

Challenges
We hope that you can see from the game genre descriptions that different players want
different kinds of challenges from the games they play. Despite this, there are some general
guidelines that can help you to provide better challenges in your games. We’re going to apply
these guidelines to the Evil Clutches game from Chapter 2 to see if we can turn it into a better
game. All the new versions of the game can be found in the Games/Chapter05 folder on the CD.
We’ve provided these as .exe files because we just want you to play them and notice how the
changes are affecting the gameplay. You really don’t need to know how they are made, but you
can find the corresponding Game Maker project files in the Games/Chapter05/Registered
directory on the CD. However, because these versions contain effects that are only available in
the registered version of Game Maker, you will need to use the executables to play the game if
your copy is still unregistered.

Difficulty
Challenges are important in games, because beating challenges makes players feel good about
themselves. For this to happen, a challenge must be easy enough for a player to achieve but
hard enough to be worth bothering with. Players give up on games that are too easy, because
there is no satisfaction from beating a challenge that you could do blindfolded. However, play-
ers give up on games that are too hard because it makes them feel bad about themselves for
failing, and they don’t feel they are making any progress.

At the moment our Evil Clutches game is far too difficult at the start of the game, but in
other ways it’s too easy as well. It is too hard because just one touch of a demon will kill the
dragon, and the game can be over before the player has worked out the controls! However, it
can become too easy later on if players realize that they can always safely hide just offscreen
and swoop in to rescue the hatchlings.

Even once these issues have been fixed, the game will still be too difficult for some players
and too easy for others. People have different amounts of experience with computer games,
but the best games are the ones that players of all levels can get into. We’re going to make sure
that our game appeals to as many people as possible by adding a difficulty menu at the start of

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES88

6153CH05.qxd 3/24/06 4:09 PM Page 88

the game, allowing the player to play in easy, medium, or hard mode. So in combination with
the other tweaks, these are the changes that we’re going to make to the first version of our
game:

• Display a health bar for the dragon starting with 100 points of health.

• Make the dragon lose only 10 health points for each collision with a demon.

• Prevent the dragon from leaving the screen.

• Add a difficulty menu at the start of the game for easy, medium, or hard mode.

The file evil_new1.exe contains these four changes to the game. Play the new version
and see what you think. We’ve changed the difficulty of the game by adjusting the chance of
demons and hatchlings appearing in the different modes. There are now extra demons and
fewer hatchlings in the hard mode and fewer demons and extra hatchlings in the easy mode.
When you’re setting the difficulty of your games, remember that game developers always find
their own games easier than anyone else because they play them so much. If you make your
own games harder and harder as you get better and better at them, then they will end up too
difficult for other players. Always get someone else to test your game to make sure you’ve got
the difficulty levels about right, and if you can’t complete the game yourself, then don’t expect
anyone else to be able to!

Goals
Challenges are created by setting clear goals for players to achieve. If a goal is unclear or for-
gotten, then it no longer creates a challenge and it loses its power. In the last version of the
game, we sneaked in some extra actions that made saving the lives of 50 hatchlings the ulti-
mate goal of the game. However, you won’t have felt any more challenged, since you didn’t
know about this new goal! In fact, even once you know about it, it’s difficult to keep track of
how many hatchlings you’ve saved, so any interest in the challenge doesn’t last very long. It
may sound obvious, but to keep a player challenged you need to make sure that they know
what their goals are, and how they are progressing with them. Our game currently has two
main goals for the player: saving a set number of hatchlings and beating the top score on the
high-score table. We can make sure that these goals challenge the player by clearly displaying
information about the player’s progression toward these goals on the screen.

When players know what their goals are and how close they are to completing them, it
also begins to create the what-if effect when the player loses. The closer a player gets to their
goal, the more likely they are to think, “What if I had just been a little bit quicker, or hadn’t
made that one, stupid mistake?” Of course, this only happens if players get close to their
goals—if they don’t make it past the first obstacle, then they are more likely to think “As if!”
than “What if?” This means that a player who rescues 40 of 50 hatchlings is more likely to have
another go than a player who only rescues 10 of 50 hatchlings. We could make our game so
easy that everyone can rescue 40 hatchlings, but then the game would become too easy to
complete and lose its challenge. Instead, we can be more devious and reduce the chance of
hatchlings appearing as more hatchlings are rescued. So if the chance of the first hatchling
appearing is 1 in 50 (a 50-sided die), then the second might be 1 in 52, the third 1 in 54, and so
forth. That way, by the time the last hatchling appears, the chance of the hatchling appearing
has changed to only 1 in 150 (a 150-sided die!). In practice, this just means that hatchlings are

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES 89

6153CH05.qxd 3/24/06 4:09 PM Page 89

released more quickly at the start of the game than at the end. This will make it easier for all
players to rescue a good number of hatchlings—and trigger the what-if effect—without
making the game too easy overall.

So to incorporate all these improvements to our game’s goals, we’ll make the following
changes to the second version of the game:

• Clearly display how many hatchlings have been rescued and how many need to be
rescued in total.

• Clearly display the player’s score and the top high score to beat from the high-score
table.

• Reduce the chance of hatchlings appearing, based on the number that have already
been rescued.

Play the file evil_new2.exe containing these three changes. We hope you’ll agree that
we’re already starting to make progress toward a game that is much more fun to play than
the original (see Figure 5-2).

Figure 5-2. Finally we can see our goals and how far away we are from achieving them.

Rewards
Rewards are extremely important for maintaining a player’s interest in a game’s challenges. It
can take a lot of time and effort to complete a challenge, so a reward makes players feel much
better about it. It also makes it much more likely that they’ll want to complete other chal-
lenges offered by the game. The high-score table already provides a reward system for scores,
but we could do with something extra special for reaching the end of the game. So, once all the
hatchlings have been rescued, we will:

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES90

6153CH05.qxd 3/24/06 4:09 PM Page 90

• Display a congratulatory message.

• Award the player with a large bonus score.

• Show the player an amusing conclusion to the story of the game.

Although it is most important to reward players for completing the game’s goals, it also
helps to occasionally give them small rewards for no reason at all. Games often do this in the
form of health bonuses and other kinds of pickups, which appear at random intervals. The
fact that they appear randomly is significant, as it gives players hope that a pickup may come
along at any point. This means they are more likely to stick with the game when they’re in a
desperate situation where they might otherwise give up—and if a bonus does arrive just in
time, then the feeling of relief is enormous. It also adds to the power of the what-if effect, as
players can now think, “What if I’d had just one more health bonus—maybe I’ll be luckier next
time?” We’re going to add our own random rewards to Evil Clutches by making the following
changes:

• Make the boss demon randomly drop health and shield bonuses.

• Randomly add between 5 and 25 percent to the dragon’s health when a health bonus is
collected.

• Make the dragon immune to taking damage for 15 seconds when a shield bonus is
collected.

All of these new rewards are included in the file evil_new3.exe. The animation at the end
of the game is an example of the kind of animated rewards you can quickly create in Game
Maker with a little bit of imagination. It’s not exactly a beautifully rendered cut-scene (see
Figure 5-3), but it should make players smile.

Figure 5-3. If you mess with dragons, then you’re bound to get your fingers burned!

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES 91

6153CH05.qxd 3/24/06 4:09 PM Page 91

Subgoals
Subgoals can enhance your games by providing short-term or optional challenges for your
players to take up. Most games include a long-term goal that must to be met in order to com-
plete the game, but these can often seem very distant and hard to achieve at the start of the
game. Subgoals give the player something to aim for in the short term, and good games tend
to provide a series of both short- and long-term goals to draw the player through the game.
Our game is not very long, but there is certainly room for an additional short-term challenge.
We’ll challenge the player to shoot demons without taking damage, and reward them by
powering up their fireballs as their demon tally increases. To achieve this we will:

• Count and display the number of demons shot in a row and reset the count back to 0
when the dragon takes damage.

• Limit the number of fireballs in the air at once, based on the current demon count.
Begin with a limit of 2 and add 1 to this for each 10 demons on the tally.

• Scale the size of the fireball and add smoke effects to make the fireballs look more
impressive as the demon tally increases.

Optional subgoals are a good way of providing extra challenges to advanced players,
which other players can choose to ignore. These often include collecting particular items to
unlock extra options, or hidden levels that less adventurous players are unlikely to find. These
are really just a different way of balancing the difficulty of your game, so that players naturally
find the right level of challenge for their own abilities. For our game we’re going to turn the
collection idea on its head and add a subgoal of trying not to accidentally shoot hatchlings!
To make this work, we’ll include the following changes:

• Each time a hatchling is accidentally shot, subtract one from the total number of hatch-
lings that have to be rescued (already displayed).

• At the end of the game, award the player bonus points based on the total number of
hatchlings they’ve saved.

Ideally this should have its own special reward at the end of the game, but to keep it
simple we’ve just rewarded the player handsomely in points for each hatchling saved. You
can play a version of the game with these new subgoals in the file evil_new4.exe.

Interactivity
As well as challenges, the other main feature of games is their interactivity. Interactivity is
about putting the player in control. Good games leave the player feeling in control of the
game, while bad games make them feel powerless. As with challenges, players of different
game genres often prefer different levels of control, but there are some common ways of
helping to maintain a feeling of control in your games.

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES92

6153CH05.qxd 3/24/06 4:09 PM Page 92

Choices and Control
To give players a feeling of control, we need to provide them with choices that seem to have
a real effect on the outcome of the game. Action games constantly require players to make
choices about the physical actions of the game (jumping, shooting, flying, etc.) and so provide
an immediate feeling of control. However, games of all genres should ensure that enough
choices are available to create this feeling too. Adventure games without enough choices can
seem very linear—as if you are being forced through a path that has already been decided for
you. Whenever you add choices to your games, think carefully about the difference they really
make: is it worth having ten different weapons that all work in the same way? What’s the point
in allowing the player to choose what to say to a character if it always has the same outcome?
Adding these kinds of features won’t generally make your game any worse, but changing them
so that they make a real difference will give more control to your players and make them more
involved in the game.

We’re going to add a choice of characters to our game, so that the player can choose to
play the mother dragon or the father dragon. To make sure that this is a choice worth making,
we’re going to give each character a different special ability, which affects the way they play.
The mother dragon will be able to call hatchlings to her—causing them to speed up and get
out of harm’s way more quickly—and the father dragon will be able to blast demons at close
quarters with a cloud of steam—sending them crashing back into other demons. To add the
new character and include different separate abilities, we will:

• Add the ability to select between playing the mother and father dragons at the start of
the game.

• Add the ability for dragons to activate their special abilities using the Ctrl key.

• Make hatchlings at the same vertical level as the mother dragon speed up when she
calls them to her.

• Make demons close to the father dragon fly back into other demons when he blasts
them with a cloud of steam.

Figure 5-4 shows the character selection screen. You can see the effect of all these new
changes by playing the file evil_new5.exe.

Control Overload!
Of course, it is possible to have too many choices in a game—particularly if extra choices
mean extra controls. Most people can remember between five and nine things at once. If you
have more than five controls in your game, some players will have forgotten what the first key
does by the time they read what the last key does. In general, it’s probably not a good idea to
have more than two controls plus the arrow keys to move around. Try to make controls auto-
matically perform different functions depending on the situation: pressing the spacebar might
pick up items, open doors, or attack creatures, depending on whether the player was near to
an item, a door, or a creature. That way, you can include lots of interesting features without
needing extra controls for the player to remember.

Fortunately, this is one area where our Evil Clutches game is okay. Some players may find
the special move control a bit too much to cope with at first, but because these moves are
optional, we don’t need to worry about them too much.

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES 93

6153CH05.qxd 3/24/06 4:09 PM Page 93

Figure 5-4. It’s one big happy family—and he’s the daddy!

Unfair Punishment
With the right level of control in your games, players will feel that they are the makers of their
own fortunes. However, you can still quickly convince them otherwise by punishing them for
something that isn’t under their control. Such punishments are usually not included inten-
tionally, but friendly characters with suicidal habits and enemies that blow up your objectives
are both examples that have accidentally made it into commercial games. Avoiding unfair
punishment is usually about making sure your game still works correctly, even when a player
isn’t playing the game in exactly the way you intended. The best way to find these problems is
to get your friends to test your game thoroughly. They’ll soon tell you if they think that some-
thing is unfair about your game.

Our game occasionally punishes the player unfairly. Fireballs go straight through demons,
so it’s easy to accidentally kill a hatchling that is flying behind one. The hatchling may not
have even appeared until after the player pressed fire, but it is too late for them to do anything
about it. When this happens the player may feel frustrated at being punished for something
that was out of their control. We’ll solve this problem by making the fireballs disappear when
they kill a demon. This also has the effect of making the game a bit more fast and frantic,
which is not a bad thing for a shoot-em-up.

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES94

6153CH05.qxd 3/24/06 4:09 PM Page 94

Audio Feedback
In the final version of Evil Clutches, we’re also going to add more sound effects to improve the
game mechanics. At first glance, this may seem to go against the idea that mechanics are
about rules and mechanisms—not niceties like sound. However, sounds are not just included
in games just because they “sound nice,” but also because they provide useful feedback to the
player about what they are doing. If you go back to the Galactic Squares example from the
start of the chapter, you’ll notice that it still includes very basic sound effects. These sounds
are designed to quickly inform the player about whether their interactions with the game are
good or bad. Audio designed in this way can play an important part in helping to naturally
steer the player in the right direction, whereas otherwise they might end up confused. Con-
fused players do not feel in control, so audio has a role to play in this too.

Designing sound effects that both inspire the senses and inform the player in this way is
not easy, and commercial games have their sound effects designed by professional sound
engineers. See Chapter 15 for more information on the kinds of tools that you can use to try
to do this for yourself. You’ll find our sound effects in the Resources/Chapter05 folder and can
hear them in action by playing evil_new6.exe from the Games/Chapter05 folder. This final ver-
sion of the game includes the following changes to the unfair punishment and audio:

• Make fireballs disappear when they collide with a demon.

* Add audio feedback for shooting fireballs.

• Add audio feedback for when the dragon takes damage.

• Add audio feedback when a hatchling is saved.

• Add audio feedback for pickups.

• Add audio feedback for menus.

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES 95

6153CH05.qxd 3/24/06 4:09 PM Page 95

Summary
Now that you’ve played the final version of the game, we hope you found it much more fun
than the original from the end of Chapter 2. In this chapter we’ve learned that challenges and
interactivity are a central part of the game mechanics that make games fun to play. We’ve
looked at a number of general principles that can help you to create better interactive chal-
lenges and followed them through with the Evil Clutches example. These are certainly not the
only principles of good game design, and you are unlikely to design a good game simply by
following a set of rules. Nonetheless, here is a summary of the main issues as a starting point
for your own Game Maker projects:

• Challenge the player by

• Providing clear, achievable goals and giving feedback on the player’s progress.

• Including both long and short-term goals.

• Adding difficulty levels and optional subgoals for players of different abilities.

• Reward the player

• For achieving goals and subgoals.

• Randomly.

• Make the player feel in control by

• Giving them choices that seem to make a real difference to the game.

• Not confusing them with too many controls.

• Not punishing them for things out of their control.

• Giving the player audio feedback about their interactions with the game.

If you apply these principles with a bit of thought and care, then you should find that they
can help you to make your own games more fun to play too. That concludes this chapter and
the second part of the book—we’ll look at some more design principles at the end of the next
part, but for now we’re joining the creatures of a Japanese coral reef to learn something about
parenting . . .

CHAPTER 5 ■ GAME DESIGN: INTERACTIVE CHALLENGES96

6153CH05.qxd 3/24/06 4:09 PM Page 96

6153CH05.qxd 3/24/06 4:09 PM Page 97

6153CH06.qxd 3/23/06 10:55 AM Page 98

Level Design

The quality of a game’s level design can make or break a game. Your game’s popularity

will sink like a brick if you don’t put enough time into getting it right!

P A R T 3

6153CH06.qxd 3/23/06 10:56 AM Page 99

6153CH06.qxd 3/23/06 10:56 AM Page 100

101

C H A P T E R 6

Inheriting Events:
Mother of Pearl

These days, some of the most inventive games come out of Japan. Japanese designers have
a history of taking crazy design scenarios and turning them into brilliantly addictive games
(e.g., Puzzle-Bobble, Pikmin, Gitaroo Man). Japanese games also have their own distinctive
look derived from manga comics. In this chapter we’ll make our own game in this style, based
around the classic game of Breakout. In doing so, we’ll learn how to use parent objects, one of
Game Maker’s most powerful features. As always, though, we’ll need to start by writing a quick
description of our game design.

Designing the Game: Super Rainbow Reef
Titles for Japanese games often start with the word “Super” (Super Monkey Ball, Super Smash
Brothers, Super Street Fighter, etc.), so we’re calling this game Super Rainbow Reef to keep in
with the theme. Here’s the design:

The monstrous Biglegs have driven the peace-loving creatures of Rainbow Reef from their
ancestral homes. Despite their inexperience in the ways of war, Pop and Katch have invented a
way of combining their skills to fight back against the Biglegs. For this incredible feat, Pop must
bounce from Katch’s shell to attack the evil invaders. Katch must then move quickly to save Pop
from plummeting into the deep waters below. The cowardly Biglegs often retreat behind coral
defenses, so our heroes must be prepared to smash their way through if they are to finally drive
the Biglegs from Rainbow Reef!

There will be no direct control over Pop’s movement, and he’ll bounce freely around a play-
ing area enclosed by walls on all sides except the base. The left and right arrow keys will move
Katch horizontally along the base in order to bounce Pop from Katch’s shell and stop him from
falling out of the level. The collision point along Katch’s shell will determine the direction of
Pop’s bounce, and so allow the player to control his movement. Bounces toward the left will send
Pop left and bounces toward the right will send him right. Pop’s movement is also affected by
gravity, and each time he collides with Katch, he gets slightly faster so that the game becomes
increasingly difficult.

The game will have several levels, each containing a number of Biglegs that Pop must col-
lide with in order to complete the level. Most levels will also contain coral block defenses, which
must be knocked out of the way in order to reach the Biglegs. Breaking blocks will score extra
points and special blocks give the player extra rewards, but they don’t have to be destroyed to

6153CH06.qxd 3/23/06 10:56 AM Page 101

finish a level. If Pop leaves the screen, the player loses a life and Pop is brought back into play.
Once three lives have been lost, the game ends and a high-score table is displayed. A typical level
is shown in Figure 6-1.

Figure 6-1. Here’s a typical level in Super Rainbow Reef.

This time we will also make a separate feature list. It consists of all the different kinds of
enemies and blocks that are available to create each level:

• Enemies:

• Large stationary Biglegs

• Small stationary Biglegs

• Large Biglegs that move horizontally

• Small Biglegs that move horizontally

• Blocks:

• Multicolored blocks that can be destroyed for points

• Solid blocks that cannot be destroyed

• Blocks that must be hit twice before they are destroyed

• Invisible solid blocks that cannot be destroyed

• Blocks that create two extra copies of Pop when destroyed

• Blocks that give the player an extra life

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL102

6153CH06.qxd 3/23/06 10:56 AM Page 102

This should give enough information to create the game. All resources for this game have
already been created for you in the Resources/Chapter06 folder on the CD.

A Game Framework
From now on, we are going to use a standard framework for many of the games we create so
that they all have start and end screens that work in the same way. This framework will have
the following parts:

• A title screen that displays the name of the game and has buttons to start a new game,
load a saved game, show help, display the high-score table, and quit the game. Game
developers normally use the term front-end to refer to the part of the game that allows
the player to make selections like this. This screen will also be responsible for starting
the background music and for initializing any other game settings, like the score.

• The actual game.

• The end of game screen that is shown when the game has been completed. This
displays a congratulatory message and activates the high-score table, after which the
game returns to the front-end.

You should already be familiar with how to do most of this from previous chapters, but
this time we’re adding button objects so that the player can control what is going on.

The Front-End
We’ll begin by creating the front-end. Commercial games often have developers who devote
all their time to creating the front-end for a game. Fortunately, ours won’t be that complicated;
all we need is a background image, a title sprite, several button sprites, and some background
music. Let’s start by adding these to the game.

Creating the front-end resources for the game:

1. Launch Game Maker if you haven’t already and start a new empty game.

2. Create a new sprite called spr_title using Title.bmp from the Resources/Chapter06
folder on the CD (you can use Title.gif instead if you prefer the look of it).

3. Create the five button sprites—spr_button_start, spr_button_load, spr_button_help,
spr_button_scores, and spr_button_quit—using the appropriate sprites from the
same directory. Disable the Transparent option on these sprites.

4. Create a new background called background1 using Background1.bmp from the
Resources/Chapter06 folder.

5. Create a new sound resource called snd_music using Music.mp3 from the
Resources/Chapter06 folder.

This gives us all the resources we need for creating the front-end, so now we can define
the objects for it. We’ll start with the object that displays the title sprite, sets the score to 0, and

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 103

6153CH06.qxd 3/23/06 10:56 AM Page 103

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL104

plays the background music (we’ll give this object some other functions as well later on). After
that we’ll create the button objects for the front-end.

Creating the title object resource for the front-end:

1. Create a new object called obj_title and give it the title sprite.

2. Add a Create event to the object and include a Set Score action to set Score to 0.

3. Add an Other, Game Start event and include a Play Sound action (main1 tab) in it.
Select the background music, and set Loop to true so that the music plays forever.

4. Click OK to close the properties form.

Creating the button objects resources for the front-end:

1. Create a new object called obj_butstart and give it the start button sprite.

2. Add a Mouse, Left Pressed event and include the Next Room action (main1 tab). The
Left Pressed event happens when the user clicks on an instance’s screen position with
the left mouse button.

3. Click OK to close the Object Properties form.

4. Create a new object called obj_butload and give it the load button sprite.

5. Add the Mouse, Left Pressed event and include the Load Game action (main2 tab).
File Name must be the same name as the file that we use to save the game to later on,
so it’s easiest to leave this as the default setting.

6. Click OK to close the Object Properties form.

7. Create a new object called obj_buthelp and give it the help button sprite.

8. Add the Mouse, Left Pressed event and include the Show Info action (main2 tab).
This action shows the player the text entered under Game Information.

9. Click OK to close the Object Properties form.

10. Create a fourth button object called obj_butscores and give it the score button sprite.

11. Add the Mouse, Left Pressed event and include the Show Highscore action (score tab).
Feel free to play around with the settings to make the table look nice.

12. Click OK to close the Object Properties form.

13. Create a final object called obj_butquit and give it the quit button sprite.

14. Add the Mouse, Left Pressed event and include the End Game action (main2 tab).

15. Click OK to close the Object Properties form.

This gives us all the objects we need. Now we need to create a room to put them in that
acts as the front-end itself.

6153CH06.qxd 3/23/06 10:56 AM Page 104

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 105

Creating the front-end room resource for the game:

1. Create a new room resource called room_frontend (settings tab). Give the room a cap-
tion, then scale the room window so that you can see as much of the room as possible
(preferably all of it).

2. Switch to the backgrounds tab. Click the menu icon to the right of where it says
<no background> and select the background from the pop-up menu.

3. Next switch to the objects tab. Place one instance of each of the button objects along
the bottom of the room (or somewhere else if you prefer). A logical order would be
Start, Load, Help, Scores, Quit.

4. Select the title object and position it in the center of the room (remember that you can
move an instance by holding the Ctrl key). Your room should now look something like
Figure 6-2.

■Note When you add an instance on top of an existing instance, the existing instance is deleted. This can
be avoided by disabling the Delete Underlying option at the bottom left.

Figure 6-2. The front-end room looks like this in the room editor.

6153CH06.qxd 3/23/06 10:56 AM Page 105

Finally, you should write a short help file for the game. You may find this easier once we
have finished making the game, but we’ll remind you how to do it now anyway.

Adding game information to the game:

1. Double-click on Game Information near the bottom of the resource list.

2. Type the name of the game, your name as the creator, a short description of the
objectives, and a description of the controls.

3. Click on the green checkmark at the top left to close the editor.

You might want to test the framework now to check that it works correctly. An error mes-
sage will appear if you click the start button, but that’s fine as there are no rooms to go to yet in
the game. Likewise, the load button will not do anything as there is no saved game to load, but
the help, scores, and quit buttons should all work correctly.

The Completion Screen
We’ll create the completion screen in a similar way to the one described in the previous chap-
ter. It will contain one object that displays some text congratulating the player and adds 1,000
points to the player’s score. There will then be a short pause and the high-score table will be
displayed. After this, the player returns to the opening screen.

To achieve this, we’re going to use new kinds of events and actions called alarms. Alarm
actions work like a countdown for triggering alarm events. Alarm actions are given an amount
of time to wait, and an alarm event is executed at the moment that time runs out. Like in other
places in Game Maker, this time is measured in steps, so for each alarm action you indicate
how many steps there should be before the alarm event takes place. Each instance of an object
can have up to 12 alarms that can be used to make things happen at set points in the future.

Creating a congratulation object that uses alarm events and actions:

1. Create a new sprite called spr_congrats using the file Congratulation.gif.

2. Create a new object called obj_congrats and give it the congratulation sprite.

3. Add a Create event and include the Set Alarm action (main2 tab). Set Number of Steps
to 120 to create a delay of 4 seconds (as there are 30 steps in a second). Leave In Alarm
No set to Alarm 0. See Figure 6-3.

4. Include a Set Score action below the alarm using a New Score of 1000, and enable
Relative so that the score is added on.

5. Add an Alarm, Alarm 0 event. This is the event that will now happen four seconds after
the alarm action is executed. Include a Show Highscore action in this event and give it
the same background and font settings as before.

6. Include the Different Room action (main1 tab) and select the front-end room.

7. Click OK to close the Object Properties form.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL106

6153CH06.qxd 3/23/06 10:56 AM Page 106

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 107

Figure 6-3. Set an alarm clock to 120 steps, which is equivalent to four seconds.

Creating a completion room for the game:

1. Create a new room called room_completed (settings tab) and give it an appropriate
caption.

2. Switch to the backgrounds tab. Click the menu icon to the right of where it says
<no background> and select the background from the pop-up menu.

3. Switch to the objects tab. Select the congrats object and position it in the top-left
corner of the room.

It is time to test your work and try all the buttons again. Playing the game should now
take you straight to the closing screen (you’ve finished all the levels as there are none!). You
can now also add your name to the high-score table and view it again from the front-end. If
any of this isn’t working correctly, then carefully check that you’ve followed the instructions
correctly. Alternatively, you can load this version from Games/Chapter06/rainbow1.gm6 on
the CD.

We’ll use this same framework (with different graphics) for many of the remaining games
in the book. We won’t have the space to explain all the steps again in so much detail, so make
sure that you understand it well before continuing. Otherwise, you can either refer back to
this chapter, or simply load each game with the framework already made to save yourself
some work.

Bouncing Starfish
Now that our framework is complete, let’s get started on the fun part: developing our game.
In this section, we will create Pop, Katch, and the level boundary so that we can get Pop
bouncing around the screen. As usual, we begin by creating the relevant sprites for the game.

6153CH06.qxd 3/23/06 10:56 AM Page 107

Creating new sprite resources for Pop, Katch, and the wall:

1. Create a sprite called spr_wall using Wall.gif from the Resources/Chapter06 folder on
the CD. Disable the Transparent option so that the wall appears completely solid.

2. Create a sprite called spr_pop using Pop.gif. Click the Center button to place the origin
of the sprite (where it is “held” from) at its center. Moving Pop from his center will
make it easier to work out how far he has landed along Katch’s shell when they collide.
Also enable the Smooth Edges option to make the edges of Pop’s legs look neater.

3. Create a sprite called spr_katch using Katch.gif. Click the Center button again and
enable the Smooth Edges option too.

The next step is to create the corresponding objects. The wall object is extremely easy:
it doesn’t do much except act as a solid boundary for the playing area.

Creating the wall object resource for the game:

1. Create a new object called obj_wall and select the wall sprite.

2. Enable the Solid option and click OK to close the form.

Next we will add an object for Katch. Although Pop and Katch are both on the player’s
team, only Katch can be directly controlled by the player. The left and right arrow keys need to
move Katch in the appropriate direction when there are no walls in the way. We will check for
walls using a Check Object action that tells us if another kind of object is nearby. By making
this check before moving Katch left or right, we can make sure that we only move her when
her path is not blocked.

Creating the Katch object resource for the game:

1. Create a new object called obj_katch and give it Katch’s sprite.

2. Add a Keyboard, <Left> event.

3. Include the Check Object conditional action (control tab) in this event. Select the wall
object, set X to -10 and Y to 0, and enable the Relative option. This will check for wall
objects 10 pixels to the left of Katch. Also enable the NOT option. This reverses the con-
dition so that the next action (to move Katch) will be executed only if there is not a wall
object in the way. The action should now look like Figure 6-4.

4. Include the Jump to Position action (move tab). Set the same values for X and Y
(-10 and 0) and enable the Relative option so that Katch moves into the position that
we just checked was free of walls.

5. Add a Keyboard, <Right> event.

6. Include the Check Object action (control tab). Select the wall object, set X to 10 and Y
to 0, and enable the Relative option. Also enable the NOT option again. This performs
the same check for walls to the right.

7. Include the Jump to Position action (move tab). Set X to 10 and Y to 0, and enable the
Relative option. This moves Katch to the right if there are no walls blocking the way.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL108

6153CH06.qxd 3/23/06 10:56 AM Page 108

■Note All conditional actions have a NOT field. This is used to indicate that the following actions are
executed only if the condition is not true.

Figure 6-4. This action checks that there is no wall object to the left of Katch.

■Tip When there is just one action that must be executed as a result of a condition, there is no need to put
start and end blocks around it.

That completes the Katch object; now we need to create an object for Pop. This will be
more complicated as it needs to move around and bounce against the walls. We’ll also add
some gravity so that Pop moves more realistically, and floats back down toward Katch at the
bottom of the screen.

Creating the Pop object resource for the game:

1. Create a new object called obj_pop and give it Pop’s sprite. Set its Depth to 10 so that it
appears behind other objects in the game (this will look better later on).

2. Add a Create event and include a Move Free action with a Speed of 12. We want Pop
to start moving upward, but we’ll add a little variation by typing random(60)+60 as the
Direction. The random(60) part will produce a random number between 0 and 60, so
by adding 60 to this we will get a value between 60 and 120. This means we will get a
direction somewhere between the two green arrows in Figure 6-5.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 109

6153CH06.qxd 3/23/06 10:56 AM Page 109

■Note Angles in Game Maker work slightly differently from the way you might be used to. There are still
360 degrees in a full circle, but 0 degrees is horizontally to the right and they increase in an anticlockwise
direction (see Figure 6-5).

3. Include a Set Gravity action (move tab), setting Direction to 270 (directly downward,
see Figure 6-5) and Gravity to 0.2. This means that a downward speed of 0.2 will be
added to Pop’s current speed in each game step, pulling him slowly toward the bottom
of the screen. The form should now look like Figure 6-6.

Figure 6-5. Angles in Game Maker work differently from the way you may be used to.

Figure 6-6. This action sets the gravity downward by using an angle of 270 degrees.

4. Add a Collision event with the wall object and include a Bounce action. Set the Precise
option to precisely so that it takes into account the exact appearance of the colliding
sprites to calculate the result of the collision.

Now we need to create actions to make Pop bounce off Katch’s shell. We could use the
Bounce action again, but then Pop would always bounce in the same way. We want the player

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL110

6153CH06.qxd 3/23/06 10:56 AM Page 110

to be able to control the direction of the bounce, so we need to alter it according to how far
Pop bounces along Katch’s shell. A bounce in the center of the shell should send Pop straight
up the screen, but a bounce toward the end will send Pop diagonally in that direction (see
Figure 6-7). In fact, we’re going to send Pop bouncing off at an angle between 50 and 130
degrees, depending on his collision position.

Figure 6-7. The angle that Pop bounces will depend on how far along Katch’s shell he collides.

To achieve this, we need to compare Pop and Katch’s horizontal positions at the moment
they collide. Remember that both Pop and Katch’s sprites have their origins in the center, so
when their horizontal (x) positions are equal, then Pop is exactly in the middle of Katch’s shell.
When this is the case, we want Pop to rebound with an angle of 90 degrees, straight upward.

However, if Pop’s x-position is smaller than Katch’s x-position, then Pop has landed on the
left side of the shell, which means he should bounce more to the left—with an angle of more
than 90 degrees. Similarly, if Pop’s x-position is larger than Katch’s, then he has landed on the
right and we need a direction smaller than 90 degrees. You should remember from previous
games that we can get an object’s own x-position using the x variable, and the x-position of
another object (like Katch) by putting its name in front of it like this: obj_katch.x.

So we can work out the difference between Pop’s and Katch’s horizontal positions by sub-
tracting one from the other: obj_katch.x-x. This difference will be a positive number if Pop
lands on the left side of Katch and a negative number if he lands on the right (try working it
out on paper for a few example positions, if it helps). It will also be exactly zero when Pop is in
the middle. So actually, all we need to do is add 90 to this difference (90+obj_katch.x-x) and it
will give us the range of angles between 50 and 130 degrees we’re after (see Figure 6-7). We’ll
also make the game get harder over time by increasing Pop’s speed each time he collides with
Katch.

Adding a collision event to the Pop object for colliding with the Katch object:

1. Add a Collision event with the Katch object and include a Move Free action in it. Type
90+obj_katch.x-x in Direction and speed+0.3 in Speed (this adds 0.3 to the current
speed).

2. Finally we need to restart the room when Pop falls off the bottom of the screen. Add
the Other, Outside Room event and include the Restart Room action (main1 tab).

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 111

6153CH06.qxd 3/23/06 10:56 AM Page 111

These are all the objects we need to start testing our game, so let’s quickly create a test
room to do this. This room must be inserted between the front-end room and the completed
room in the resource list.

Creating a new test room resource for the game:

1. Right-click on room_completed in the resource list and select Insert Room from the
pop-up menu that appears. This will insert a new room before room_completed and
open the properties window for the new room.

2. Switch to the settings tab and call the room room_test.

3. Switch to the backgrounds tab and set the background for the room.

4. Our wall sprites are 20 by 20 pixels, so set both Snap X and Snap Y to 20 in the toolbar
at the top of the Room Properties form. The grid in the room will then change accord-
ingly to make it easier to place the walls.

5. Switch to the objects tab. Select the wall object and place wall instances all the way
along the left, top, and right boundaries of the screen. Remember that you can hold
the Shift key to add multiple instances and use the right mouse button to delete them.

6. Select the Katch object and place one instance in the middle at the bottom of the
screen. Also add one instance of the Pop object somewhere in the center of the room.
The room should now look like Figure 6-8.

Figure 6-8. The test room is empty, but functional.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL112

6153CH06.qxd 3/23/06 10:56 AM Page 112

■Note Sometimes when you close a room form you get a warning message saying that there are instances
outside the room. This can happen when you accidentally move the mouse outside the room area while
adding objects. You will be asked whether these instances should be removed—simply click the Yes button.

Now we can test our game, so save, run, and play the game. Try out the test level and
make sure that Pop bounces off the walls and Katch’s shell as planned. If there are problems,
check your steps or load the current version from Games/Chapter06/rainbow2.gm6 on the CD.

Biglegs
It’s about time we put some goals into the game, so we’re going to create objects for the Biglegs
next. Pop must destroy all of the Biglegs on each level by colliding with them. The level is
completed when all the Biglegs have been destroyed, so we’re also going to create a controller
object to check when all the Biglegs have gone. Despite their evil reputation, basic Biglegs will
do very little and just destroy themselves when Pop collides with them.

Creating Bigleg object resources for the game:

1. Create a sprite called spr_bigleg using Bigleg.gif from Resources/Chapter06 on
the CD.

2. Create an object called obj_bigleg and give it the Bigleg sprite.

3. Add a Collision event with Pop and include a Destroy Instance action (main1 tab).

4. Include a Set Score action (score tab), with New Score set to 200 and Relative enabled
(remember that the Relative option will add the value to the current score).

Next we’ll create our controller object. Each level of the game (every room except the
front-end and completion rooms) will need an instance of the controller object to count the
number of Bigleg instances. It will do this in every step, and when it reaches 0 it will pause
briefly before advancing to the next room.

Creating a controller object resource for the game:

1. Create an object called obj_controller. No sprite is required.

2. Add the Step, Step event and include the Test Instance Count action in it (control tab).
Indicate the Bigleg object as the object to count and leave the default values to check
when the number of Biglegs is equal to zero.

3. Include the Start Block action to begin a block of actions that depend on the check.

4. Include a Sleep action (main2 tab) with Milliseconds set to 1000 (1 second).

5. Include a Next Room action (main1 tab).

6. Finish the current block by including an End Block action.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 113

6153CH06.qxd 3/23/06 10:56 AM Page 113

Next we’ll add some instances of these objects to a couple of test rooms. We’ll make two
rooms by copying the first test room; this saves us from having to set the background and
place the walls again.

Duplicating test room resources for the game:

1. Reopen the test room by double-clicking on it in the resource list.

2. Put one instance of the controller object into the room. It doesn’t matter where, so
put it somewhere like the bottom-left corner where it will be out of the way of other
instances.

3. Put two instances of the Bigleg object in the top-left and -right corners of the room.

4. Close the properties form for the room.

5. Right-click on the test room in the resource list and choose Duplicate from the pop-up
menu. This will create a copy of the room and open its properties form.

6. Switch to the settings tab and give the room a better name (change the caption too if
you like).

7. Switch to the objects tab and use the right mouse button to remove the two Bigleg
instances.

8. Add a few instances of the Bigleg object in the top center of the room instead. Also add
some instances of the wall object below them to make it harder for Pop to reach them.
This room should then look something like Figure 6-9.

Figure 6-9. This test room already provides a challenge.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL114

6153CH06.qxd 3/23/06 10:56 AM Page 114

Save and test the game at this point to see whether it works correctly.
We now have all the ingredients we need to make a simple game, but it would be nice if

there were some variation in the kinds of Biglegs that the player encounters through the game.
An obvious candidate is a smaller Bigleg, making it more difficult to hit. To make this, we could
repeat all the earlier steps and let the controller object count both the normal objects and the
small objects. However, there is a much quicker and easier way to do this: by using parents.
We’ll explain how these work shortly, but for now follow these steps to see how powerful this
feature of Game Maker can be.

Creating the small Bigleg object resource:

1. Create a sprite called spr_bigleg_small using the file Bigleg_small.gif.

2. Create an object called obj_bigleg_small and give it the small Bigleg sprite.

3. Click the menu icon next to the Parent field (on the left of the new object’s properties
form) and select obj_bigleg as the parent. The left part of the Object Properties form
should now look like Figure 6-10.

4. And that’s all you need to do! Close the form by clicking the OK button.

We now have a small Bigleg object that does everything that the normal Bigleg object
does. This is because the small Bigleg inherits the behavior (all the events and actions) of the
normal Bigleg when we make the normal Bigleg its parent. This means it reacts in the same
way to collisions with Pop and will automatically know to increase the player’s score by 200
and destroy itself. There’s no need to add these events and actions again since they are auto-
matically inherited from the parent. Also, as a child of the Bigleg, the small Bigleg is now
considered to be a Bigleg too. This means that the controller object automatically includes
it in its count to see how many Biglegs are left in the room.

Try this out by adding some small Biglegs to the test rooms. The small Biglegs are
destroyed when Pop hits them, and the level is only completed when all the Biglegs of both
types have been removed. We can use this same parenting technique to create a moving
Bigleg that inherits all the same behaviors but adds a new behavior of its own as well.

Figure 6-10. Set the parent field for the small Bigleg.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 115

6153CH06.qxd 3/23/06 10:56 AM Page 115

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL116

Creating the moving Bigleg object resource:

1. Create an object called obj_bigleg_move and give it the normal Bigleg sprite.

2. Click the menu icon next to Parent and select obj_bigleg as the parent. Also set the
Depth field to 10 so that it appears behind other objects.

3. Add a Create event and include the Move Fixed action in it. Select both the left and
right directions (to make Game Maker choose randomly between them) and set
Speed to 8.

4. Add a Collision event with the wall object and include the Reverse Horizontal action
in it. Close the form by clicking the OK button.

This moving Bigleg automatically inherits the behavior of the normal Bigleg (to destroy
itself when Pop collides with it) and adds to that some extra behavior to make it move back
and forth. In the same way, we can quickly add a small moving target.

Creating the small moving Bigleg object resource:

1. Create an object called obj_bigleg_move_small and give it the small Bigleg sprite.

2. Click the menu icon next to Parent and select obj_bigleg_move as the parent. Also set
the Depth field to 10 so that it appears behind other objects.

3. Close the form by clicking the OK button.

This time were using the moving Bigleg as the parent, which in turn has the normal Bigleg
as a parent. This means it inherits the behavior of both the moving Bigleg and the normal
Bigleg. Add a few small moving Biglegs to the test levels and carefully check that the game is
working correctly. You will find a version of the game so far in Games/Chapter06/rainbow3.gm6
on the CD.

Parent Power
As you have seen, parents are extremely powerful and can save you a lot of time. The Biglegs
are quite simple, but parents can save you hours of repeated work for objects with many
events and actions. You could just duplicate objects to save time, but any changes you want to
make afterward have to be made to both the original and each of the copies you made. How-
ever, when you change a parent, the changes automatically apply to the children of that
parent too—a very useful feature.

Next we present a number of rules that determine the way that parents work in different
situations. We’ll describe these now for future reference, but don’t worry if they don’t make
complete sense on your first read. Everything should become a lot clearer once you are work-
ing with real examples, so bend down the corner of the page so that you can refer back to
them when you’re using parents in your own games.

6153CH06.qxd 3/23/06 10:56 AM Page 116

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 117

Inheriting Events. A child inherits all the events (and actions) of its parent. A child can

have its own events as well, but these only apply to the child and not the parent. When

both the child and parent have the same event with different actions, then the actions of

the child are used for the child, and the actions of the parent are used for the parent.

We saw this earlier when the moving Biglegs inherited events from normal Biglegs but
added their own extra events to make them move as well. Naturally, this did not make the
normal Biglegs move as well because parents don’t inherit events from children.

Actions on Objects. When an action refers to a parent object, this includes instances of

the child object as well. However, when an action refers to the child object, it does not

include instances of the parent object.

So when counting the number of instances of normal Biglegs, it automatically included
all of the other Bigleg objects that were children of it. The same rule applies to any action that
can be applied to an object. However, remember that Self and Other refer to instances, not
objects, so applying an action to them does not affect their parent or child objects.

Collision with Objects. A collision event with a parent object also applies to collisions

with children of that object. However a collision event with a child object does not apply

to collisions with parents of that object.

This will be useful later on as we want to have many different types of coral blocks that
Pop can collide with. By making all of these blocks have the same parent, we only need to
define one collision event between Pop and the parent block, and it will also work for all the
child blocks.

Parenting Objects. Parents can have parents, which can have parents, etc. However, you

must not create cycles of parents, so if P is the parent of C, then C cannot also be the

parent of P.

This may sound confusing, but makes perfect sense if you think about it—you couldn’t be
your own father or grandfather, so it doesn’t work in Game Maker either.

Lives
In this kind of game, it is common to give the player a fixed number of lives to try and com-
plete it. Game Maker includes events and actions specifically to handle lives. These allow you
to set and display the number of lives as well as testing for when the player has none left. We’ll
use our controller object to look after the actions that control lives, but first we need to set the
number of lives at the start of the game. The best place to do this is in the title object.

6153CH06.qxd 3/23/06 10:56 AM Page 117

Setting the lives in the create event of the title object:

1. Double-click the title object in the resource list to open its properties form.

2. Select the Create event to view its Actions list. Include a Set Lives action (score tab),
with a value of 3.

Next we’ll make the player lose a life when Pop falls out of the room. However, one of our
planned features for the game will make copies of Pop so that there can be several Pops flying
around the screen at the same time. So the player should only lose a life when the last surviv-
ing Pop falls out of the room. When this happens, we’ll reduce the player’s lives and create a
new Pop in the center of the screen.

Editing the Pop object to add an event for being outside of the room:

1. Double-click the Pop object in the resource list to open its properties form.

2. Select the Outside Room event and remove the Restart Room action from it (left-click
on the action once and press the delete key, or right-click on the action and select
delete). Include a Destroy Instance action in its place.

3. Include the Test Instance Count action (control tab). Indicate the Pop object as the
object to count and leave the default values to check if this is the last Pop leaving
the screen.

4. Include the Start Block action to begin a block of actions that depend on the test.

5. Include a Set Lives action with New Lives set to -1 and the Relative option enabled.
This will then subtract one from the number of lives.

6. Include a Create Instance action. Select the Pop object; set X to 320 and Y to 300.

7. Finally, include an End Block action and close the Pop object’s properties.

When the player loses their last life, we need to show the high-score table and return to
the front-end room. We’ll use the controller object to check this using a special event.

Editing the controller object to add an event for having no more lives:

1. Double-click the controller object in the resource list to open its properties form.

2. Add the Other, No More Lives event and include a Show Highscore action in it. Use the
same Background and Font as before.

3. Include the Different Room action and indicate the front-end room. Close the con-
troller object’s properties form.

Finally, we should display the number of lives on the screen—otherwise, the end of the
game could be a bit of a shock to the player! To do this, we’re going to use a new event called
the Draw event, which requires a little explanation. Normally each object automatically draws
its own sprite in the correct position on the screen. However, the Draw event allows you to
draw something else instead, such as several different sprites or colored shapes and text.
When the Draw event is included, the object’s sprite stops being drawn automatically and
your own actions in the Draw event are executed instead.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL118

6153CH06.qxd 3/23/06 10:56 AM Page 118

We’re going to use the Draw event of the controller object to show the player’s remaining
lives as a number of small shells along the bottom of the screen. Game Maker even provides
the Draw Life Images action to help us do this.

Creating a sprite for the controller object to draw as lives:

1. Create a sprite called spr_katch_small using the file Katch_small.gif.

2. Double-click on the controller object in the resource list to open its properties form.

3. Add the Draw event and include the Draw Life Images action (score tab). Set X to 25
and Y to 470, and select the small Katch sprite (as shown in Figure 6-11).

Figure 6-11. This action will draw the lives as images.

■Note Adding a Draw event to any object stops that object from automatically drawing its own sprite
and allows you to include your own draw actions instead. This means that if you want to draw something
in addition to the object’s normal sprite, you need to draw the normal sprite as well. If you always know
what sprite this should be, then simply use a Draw Sprite action. However, if you want to be able to
change the sprite using the Set Sprite action, then include an Execute Code action (control tab) and
type draw_sprite(sprite_index, image_index, x, y) into it. This small piece of GML code (see
Chapter 12) will then draw the sprite in the usual way in addition to any other draw actions in the event.

When you play the game now, there should be three small images of Katch in the bottom
left of the screen. One should disappear each time Pop goes off the screen, and the game
ends with a high-score table when they’re all gone. You’ll find a version of the game so far in
Games/Chapter06/rainbow4.gm6 on the CD.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 119

6153CH06.qxd 3/23/06 10:56 AM Page 119

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL120

Blocks
There are only so many ways of varying a level by placing Biglegs in different places, so we’re
going to provide them with some defenses to give the level design a bit more scope. We’ll start
with simple (coral) blocks that deflect Pop but are destroyed in the process. These blocks are
just there to get in the way, but later we’ll go on to make some special blocks as well.

Normal Blocks
We can use parents to quickly create a number of different-colored blocks. These blocks will
all behave in exactly the same way, and the different colors are just to make the Rainbow Reef
live up to its name.

Creating block object resources for the game:

1. Create seven sprites called spr_block1 to spr_block7 using the files Block1.gif to
Block7.gif. Disable the Transparent option on them all to make them appear solid.

2. Create a new object called obj_block1 and give it the first block sprite. Enable the Solid
option and close the properties form. That’s it for this object.

3. Now create six more objects for the other six blocks using the appropriate sprites.
Enable the Solid option on each one and set Parent to obj_block1. They are now all
children of the first block.

Editing the Pop object to add a collision event with blocks:

1. Reopen the Pop object’s properties form from the resource list.

2. Add a Collision event with obj_block1 and include the Bounce action with Precise set
to precisely.

3. Include the Set Score action with New Score set to 20 and the Relative option enabled.

4. Finally, include a Destroy Instance action and set Applies to to Other. This indicates
that it is the block rather than Pop that should be destroyed.

This is the only collision event that we need to define between Pop and the seven types of
block. This is because all the other blocks are children of the first block, so this event applies to
collisions with those blocks as well. Add some of the new blocks to the test levels and play the
game to make sure everything works as expected.

Solid Blocks
Next we’ll create a solid block that Pop can’t destroy. This behaves in the same way as the wall
object, so we’ll use that as its parent.

6153CH06.qxd 3/23/06 10:56 AM Page 120

Creating a solid block resource for the game:

1. Create a sprite called spr_block_solid using Block_solid1.gif. Disable the
Transparent option to make it appear completely solid.

2. Create a new object called obj_block_solid and give it the solid block as a sprite.
Check the Solid option and give it the wall object as a Parent.

We do not need to define any collision events between Pop and solid blocks because
we’ve already defined collision events with its parent, the wall. Let’s also create an invisible
solid block to give the player a surprise in later levels. This is actually probably not such a good
idea from a design perspective. Players will just think it’s a bug or feel unfairly punished when
Pop bounces off in an unexpected direction. However, it illustrates a point about collisions
with invisible objects, so we’ll make it as an example.

Creating an invisible block resource for the game:

1. Create a new object called obj_block_solid_inv and give it the solid block as a sprite.
Enable the Solid option and give it the wall object as a Parent. Also disable the Visible
option to make the object invisible.

So even though this object is invisible, it still needs a sprite. Game Maker needs a sprite to
work out when objects collide with each other, and an object without a sprite will not trigger
any collision events.

Special Blocks
Now let’s add a few more interesting blocks. This one will require two hits to destroy it.

Creating the double block sprite and object resources:

1. Create a sprite called spr_block_double using Block_double.gif. Disable the
Transparent option to make it appear completely solid.

2. Create a new object called obj_block_double. Give it the double sprite and enable the
Solid option. Close the object properties.

Adding a collision event to the Pop object for colliding with the double block:

1. Reopen the Pop object’s properties form and add a Collision event with the double
block object.

2. Include the Bounce action in this event and set Precise to precisely.

3. Also include a Set Score action with a New Score of 20 and the Relative option
enabled.

4. Finally, include a Change Instance action. Set Applies to to Other and select
obj_block1 so that the double block changes into a normal block.

5. Close the Object Properties form.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 121

6153CH06.qxd 3/23/06 10:56 AM Page 121

Next we’ll add a block that creates two additional instances of Pop, making it look as if he
has split into three (like some starfish can do).

Creating the split block sprite and object resources:

1. Create a sprite called spr_block_split using Block_split.gif. Disable the Transparent
option to make it appear completely solid.

2. Create a new object called obj_block_split and give it this new sprite. Enable the Solid
option and set the Parent field to obj_block1.

3. Add a Collision event with the Pop object and include a Create Instance action.
Set Object to obj_pop, then type other.x into X and other.y into Y (see Figure 6-12).
This will create the new Pop at the same position as the old Pop.

4. Include another Create Instance action exactly the same as in step 3.

Figure 6-12. Let’s create some extra starfish.

Finally, let’s add a block that gives the player an extra life.

Creating the life block sprite and object resources:

1. Create a sprite called spr_block_life using Block_life.gif. Disable the Transparent
option to make it appear completely solid.

2. Create a new object called obj_block_life. Enable the Solid option and set the Parent
field to obj_block1.

3. Add a Collision event with the Pop object and include a Set Lives action. Set New Lives
to 1 and enable the Relative option.

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL122

6153CH06.qxd 3/23/06 10:56 AM Page 122

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 123

It is time to test all these blocks by adding them to our test levels. Feel free to experiment
and see what incredible combinations of levels you can come up with, or just use ours by
loading the file Games/Chapter06/rainbow5.gm6 from the CD.

Polishing the Game
We’ve already done most of the hard work, so now it’s time to put everything together into a
playable game.

Sound Effects
All the games we’ve made so far have benefited from sound effects, and this is no exception.
As you saw in the previous chapter, sounds help the player to correctly interpret their interac-
tions with the game. We’ll add different sounds for when Pop hits a wall, a block, a Bigleg or
Katch’s shell, as well as when Pop falls out of the screen.

Creating sound resources and playing them in the appropriate events:

1. Create sounds using the files Sound_wall.wav, Sound_block.wav, Sound_katch.wav,
Sound_bigleg.wav, Sound_lost.wav, and Sound_click.wav, and give them appropriate
names.

2. Play the “wall sound” in the Pop object’s Collision event with the wall object.

3. Play the "block sound" in the Pop object's Collision event with the block object and
the double block object.

4. Play the “katch sound” in the Pop object’s Collision event with the Katch object.

5. Play the “lost sound” in the Pop object’s Outside Room event.

6. Play the “bigleg sound” in the Bigleg object’s Collision event with the Pop object.

7. Play the “click sound” at the top of the Left Pressed event of each of the button objects.

Saving Games and Quitting
If you can remember back to when we were making the framework, we included a button in
the front-end to load a saved game. However, in order for this to work, we need to allow the
player to save the game at some point using the Save Game action. We’ll add an event for this
on the controller object when the S key is pressed.

■Note Game Maker must be able to write to the filename you provide in the Save Game action. This
wouldn’t normally be a problem, but it does mean you’ll get an error message if you run many of the
example games directly from the CD-ROM. This is because Game Maker cannot save files to a CD, so
copy the game files to your hard disk and run them from there in order to fix the problem.

6153CH06.qxd 3/23/06 10:56 AM Page 123

Adding a save game action to the controller object:

1. Reopen the controller object’s properties form from the resource list.

2. Add a Key Press, Letters, S event and include the Save Game action (main2 tab). You
can leave File Name set to the default as it is the same as we used for the Load Game
action in the front-end.

3. Include the Display Message action (main2 tab) and type “GAME SAVED” into Message,
so that the user knows the game was saved at this point.

4. Add a line to the Game Information describing how the game can be saved.

When you press the Esc key during play, the program ends completely, but it would be
better if this returned the player back to the front-end. Adding actions to return to the front-
end is simple enough, but this won’t work on its own. We also need to disable the default
behavior of the Esc key from within the Global Game Settings.

Editing the controller object and global game settings to disable the Esc key:

1. Reopen the controller object’s properties form from the resource list.

2. Add a Key Press, Others, <Escape> event and include the Different Room action
(main1 tab). Select the front-end room and close the controller object’s properties
form.

3. Double-click the Global Game Settings at the bottom of the resource list.

4. Switch to the Other tab and disable the Let <Esc> end the game option.

5. Also disable the Let <F5> save the game and <F6> load a game option as we have our
own save and load system.

6. Click OK to close the form.

There are many other settings that can be changed in the global game settings, but most
of these are for advanced use. We will learn more about some of them later in the book.

■Caution Beware of disabling the Let <Esc> end the game option and forgetting to include your own
method for quitting your game (using the End the Game action). If this happens, you’ll need to press
Ctrl+Alt+Delete to bring up the Task Manager and end the task from the Applications list. This will then
end the game and return you to Game Maker.

A Slower Start
Currently, Pop starts moving as soon as the level begins, giving the player no time at all to find
their bearings. The player may have been at the far side of the screen when Pop last fell out, so
it would be fairer to give them a little time to move Katch into a better position. To avoid any

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL124

6153CH06.qxd 3/23/06 10:56 AM Page 124

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL 125

complications when new Pop instances are created during play, we’re going to make a second,
stationary Pop object. This will have an Alarm Clock in its Create event that changes it into
the normal Pop when the time is up. This stationary Pop object will then be the one that gets
positioned in each room at the start of the game.

Creating a new stationary Pop object resource:

1. Create a new object called obj_pop_start. Give it the Pop sprite and a Depth of 10.

2. Add a Create event and include a Set Alarm action (main2 tab) with 30 Steps
(1 second).

3. Add an Alarm, Alarm 0 event and include the Change Instance action in it. Set
Change Into to obj_pop and indicate yes to Perform Events (see Figure 6-13). This will
ensure that the new Pop object starts moving in a random direction by performing its
Create event.

4. Reopen the Pop object’s properties form and select the Outside Room event. Double-
click the Create Instance action and change the Pop object to obj_pop_start.

5. Go through each room replacing the Pop objects with the start Pop object.

Figure 6-13. This action changes the stationary Pop into a normal Pop and performs the
Create event.

Creating the Levels
Before we start creating the final levels, we’ll add some “cheats” to make it possible to skip
through the levels for testing them. We’ll use the N key to move to the next level, the P key to
go to the previous level, and R key to restart the current level. We’ll also add a cheat that adds
an extra life when you press the L key.

6153CH06.qxd 3/23/06 10:56 AM Page 125

Editing the controller object to add cheats:

1. Reopen the controller object’s properties form from the resource list.

2. Add a Key Press, Letters, N event and include the Next Room action.

3. Add a Key Press, Letters, P event and include the Previous Room action.

4. Add a Key Press, Letters, R event and include the Restart Room action.

5. Finally, add a Key Press, Letter, L event and include the Set Lives action. Set New Lives
to 1 and enable the Relative option.

Now it’s finally time to create your levels. Let your imagination run wild and see what you
can come up with. It will save you time to begin by making a standard room containing only
the walls, the controller, the stationary Pop, and Katch. You can then copy this each time and
add the Biglegs and blocks for that level. Good level design is crucial for the success of the
game and more difficult than you may think. However, you’ll learn a lot by just trying it for
yourself, and we’ll discuss it further in Chapter 8.

Congratulations
Phew—and that’s another one done! You’ll find the final version of the game in the file Games/
Chapter06/rainbow6.gm6 on the CD. We’ve designed eight different levels—why not play them
and see if they give you any ideas for your own? There’s plenty of scope for expanding the fea-
tures of the game, if you want to. Here are some suggestions:

• Add other types of Biglegs that move in different directions.

• Add blocks that move around.

• Add bonus blocks that give a large number of points to the player’s score.

• Add some bad blocks that decrease the score! (Be sure that you make it obvious to the
player that this is happening—perhaps by using a new sound effect.)

• Add blocks that increase or decrease the speed of Pop.

• Add blocks that change the size of Pop or Katch.

In this chapter, you have learned about parents and used them in a game for the first
time. Parents are very powerful and can save you a lot of work when you are making and
changing your games. We strongly encourage you to make sure that you understand them so
that you can make full use of them in your own games.

We also introduced our game framework, which we’ll use again and refer back to in later
chapters. You saw how to deal with lives and how to use draw events and drawing actions.
Finally, you used new events and actions introducing gravity, bouncing, and alarm events into
your games.

You’ve already become quite experienced at Game Maker and made some enjoyable
games. However, we have a real treat for you in next chapter as we join a cute band of koala
bears who just can’t help walking into dangerous objects . . .

CHAPTER 6 ■ INHERIT ING EVENTS: MOTHER OF PEARL126

6153CH06.qxd 3/23/06 10:56 AM Page 126

Maze Games: More Cute
Things in Peril

Maze games have been popular since the days of Pac-Man, and they’re another kind of
game that’s easy to make in Game Maker. In this chapter, we’ll create a puzzle game where the
player must help koala bears escape from a maze full of hazardous obstacles. The focus of the
game will be on puzzles rather than action, and the levels will be designed to make the player
think carefully about the strategies they must use to avoid any unpleasant accidents. (No
animals were hurt in the making of this game.)

Designing the Game: Koalabr8
The name Koalabr8 is a play on the word “Collaborate” with a bit of text-speak thrown in for
good measure. This is because the puzzle of the game is based on the idea of controlling many
koalas at the same time. So, for example, when you press the up key, all the koalas in your
team will move up together. If you imagine trying to steer several koalas through a minefield
in this way, then you’ll get a sense of the kind of challenge we’re aiming for (see Figure 7-1).
Anyway, here’s the full description of the game:

A colony of koala bears have been captured by the evil Dr. Bruce for use in his abominable
experiments. The koalas manage to escape from their cages only to find that the doctor has
implanted some kind of mind control device in their brains. The only way they can overpower
the controlling effect is to combine their thoughts and all perform the same actions at once. The
koalas must work together to find their way past the many dangers in the doctor's laboratory
and escape to freedom.

The arrow keys will simultaneously move all of the bears on a level, except bears whose
paths are blocked by a wall or another bear. Each level will be a hazardous maze that is com-
pleted by getting all of the koalas to an exit. However, if a koala touches a dangerous hazard on
the way, then he dies and the level must be replayed. The game will contain a number of fatal
and nonfatal hazards shown in the following feature list:

• Fatal hazards

• Explosive TNT

• Moving circular saws

127

C H A P T E R 7

6153CH07.qxd 3/20/06 5:02 PM Page 127

• Nonfatal hazards

• Red exits—Allow any number of koalas to exit the level

• Blue exits—Allow a single koala to exit the level

• Locks—Block the path of koalas (red, blue, and green)

• Switches—Open locked passageways (normal, timed, and pressure)

• Boulders—Can be pushed by koalas and destroy other hazards

Figure 7-1. Here’s a typical level in the Koalabr8 game.

As always, you’ll find all the resources for this game in the Resources/Chapter07 folder on
the CD.

The Basic Maze
We’ll start by making a basic maze and getting a koala to walk around it. This same technique
can be used for making any kind of maze game, so feel free to copy it for your own projects.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL128

6153CH07.qxd 3/20/06 5:02 PM Page 128

The Game Framework
This game will use the same basic framework as we made in the previous chapter. This con-
sists of a front-end with buttons to start a new game, load a saved game, show help, and quit
the game, as well as a completion screen that congratulates the player. However, there is no
score in this game so there will be no high-score table. The instructions that follow will show
you how to create the front-end for this game, although you might want to refer back to
Chapter 6 for a more detailed explanation. Alternatively, you can just load the completed
framework from Games/Chapter07/koala1.gm6 on the CD and skip to the next section,
“A Moving Character.”

Creating the front-end:

1. Launch Game Maker and start a new game from the File menu.

2. Create sprites using the following files from the Resources/Chapter07 folder on the CD:
Title.gif, Button_start.gif, Button_load.gif, Button_help.gif, and Button_quit.gif.
Remember to name them appropriately.

3. Create a background using the file Background.bmp.

4. Create sounds using the files Music.mp3 and Click.wav.

5. Create a title object using the title sprite. Add an Other, Game Start event and include
a Play Sound action, with Loop set to true.

6. Create a start button object using the start sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to move to
the next room.

7. Create a load button object using the load sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to load the
game (use the default file name).

8. Create a help button object using the help sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to show the
game information.

9. Create a quit button object using the quit sprite. Add a Mouse, Left Pressed mouse
event and include an action to play the click sound followed by an action to end
the game.

10. Create a room using the background, and place the title and four button objects in it so
that it looks like Figure 7-2.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 129

6153CH07.qxd 3/20/06 5:02 PM Page 129

Figure 7-2. The finished front-end for Koalabr8 should look something like this.

Now follow these instructions to create the completion screen. Refer to Chapter 6 for a
more detailed explanation.

Creating the completion screen:

1. Create a sprite using the file Congratulation.gif.

2. Create a new object using this sprite. Add a Create event and include a Set Alarm
action to set Alarm 0 using 120 Steps.

3. Add an Alarm, Alarm 0 event and include an action to move to the front-end room.

4. Create a completion room using the background and place an instance of the congrat-
ulations object in it.

We also need to create the game information and change some of Game Maker’s default
settings for the game.

Changing the game settings:

1. Double-click Game Information near the bottom of the resource list and create a short
help text based on the game’s description.

2. Double-click Global Game Settings at the bottom of the resource list.

3. Switch to the Other tab and disable the two options Let <Esc> end the game and Let
<F5> save the game and <F6> load a game as we handle this ourselves.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL130

6153CH07.qxd 3/20/06 5:02 PM Page 130

That completes our game framework for Koalabr8, which can also be loaded from the file
Games/Chapter07/koala1.gm6 on the CD.

■Caution Beware of disabling the Let <Esc> end the game option and forgetting to include your own
method for quitting your game (using the End the Game action). If this happens, you’ll need to press
Ctrl+Alt+Delete to bring up the Task Manager and end the task from the Applications list. This will end
the game and return you to Game Maker.

A Moving Character
The basis of every maze game is a character that moves around walled corridors, so we will
begin by creating a wall object.

Creating the wall object:

1. Create a sprite called spr_wall using the file Wall.gif. Disable the Transparent option,
as our wall is just one large solid block.

2. Create a new object called obj_wall using this sprite and enable the Solid option.

You might be wondering why we are using an ugly black square for our walls. Don’t worry;
we’ll transform it into something that looks much nicer when we learn how to use tiles later on
in the chapter.

Next we need to create a character, which in this case is a koala bear. We’ll use five differ-
ent sprites for the koala: four animations for walking in each of the four directions and
another sprite for when koalas are standing still.

Creating the koala sprites:

1. Create a sprite called spr_koala_left using the file koala_left.gif and enable the
Smooth edges option.

2. Create sprites in the same way using the files koala_right.gif, koala_up.gif,
koala_down.gif, and koala_stand.gif.

Now we can create our koala object and give it actions that allow the player to move it
around the screen. You can probably work out how to do this yourself by now, using either
Jump or Move actions in a similar way to one of the previous games. You may even like to have
a try for yourself before continuing, but you’ll actually find that it’s very tricky to move a char-
acter through a maze using just these actions. This is because the sprites of both the walls and
koalas are exactly 40✕40 pixels, so all the corridors are only just big enough for the koalas to
walk down. You’ll see the problem if you imagine running through a maze with your arms fully
stretched out, where the width of the corridors is exactly the same as your arm span! Bumping
into walls and struggling to change direction in corridors soon removes all feeling of control
and the game stops being fun.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 131

6153CH07.qxd 3/20/06 5:02 PM Page 131

Fortunately, Game Maker comes to the rescue with the Check Grid action. This condi-
tional action allows us to test for when a koala is exactly lined up with the corridors. This
means we can ignore the player’s badly timed key presses (that normally cause the koala to
walk into walls) and wait until Game Maker knows the koala is in exactly the right place. Only
then do we let the player stop or turn their character, so that the koalas end up gliding grace-
fully along the corridors with no fuss at all.

In addition to checking that koalas are aligned correctly, we will check that there is
nothing blocking their way before even starting to move. This results in a reliable control sys-
tem that feels slick to the player and is a solid basis for any kind of maze game you might be
making. Follow these steps and you’ll see what we mean.

Creating the koala object:

1. Create a new object called obj_koala using the standing koala sprite. Set the object’s
Parent to be the wall object—this may sound odd, but all will be explained in the fol-
lowing steps.

2. Add a Keyboard, <Left> event and include the Check Grid action (control tab). Set
both Snap hor (horizontal snap) and Snap vert (vertical snap) to 40 to indicate a grid
size of 40✕40 pixels. Also enable the NOT option so that the event checks for koalas
not being aligned with the grid. The form should look like Figure 7-3.

Figure 7-3. Check whether the instance is not aligned with the grid.

3. Include the Exit Event action. This action stops any more actions from being
performed in the Actions list. We have put it underneath our Check Grid condition
so that none of the following actions are performed when the koala is not aligned
with the grid.

4. Include the Check Object action. Indicate the wall object and enable the NOT option.
Set X to –40 and Y to 0 and then enable the Relative option so that it checks that there
are no wall objects one grid square to the left of the koala.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL132

6153CH07.qxd 3/20/06 5:02 PM Page 132

5. Include the Start Block action followed by the Move Fixed action. Select the left arrow
and set Speed to 5 (this speed must divide exactly into the grid size of 40; otherwise the
koalas will not stop on each grid square).

6. Include the Change Sprite action and indicate the left-facing koala sprite. Set Subimage
to -1 so that the animation keeps playing despite the sprite being changed.

7. Those are all the actions we need to move the koala, so include an End Block action.

8. However, if there is a wall in the way, then we must stop the koala from moving. We’ve
already checked for walls not being present using the Check Object action, so includ-
ing an Else action will allow us to define what should happen when a wall is present.
Include the Else followed by a new Start Block action.

9. Include the Move Fixed action, select the middle square, and set Speed to 0.

10. Include the Change Sprite action using the standing sprite with a Subimage of -1.

11. Finally, include the End Block action. The actions should now look like Figure 7-4.

12. Now repeat steps 2–11 to create similar rules for the Right, Up, and Down arrow keys.
Make sure you choose the correct direction for each Move Fixed action, the correct
sprite for each Change Sprite action, and the correct X and Y values for each Check
Object action. When you’re making the up and down rules, remember that y increases
as you move down the screen.

Figure 7-4. These are the actions for moving the koala to the left. Note that the first
condition has its NOT property set, so it checks for when the instance is not aligned
with the grid.

Before continuing, check through your actions and make sure that you can logically
follow what they do.

The Keyboard actions start the bear moving if there isn’t a wall in the way, but we haven’t
added any actions to stop the bear yet. This will happen automatically if the player keeps their
finger on one of the arrow keys, as the actions in the Keyboard events will eventually detect a
wall and stop. However, the bear also needs to come to a halt if the player stops pressing any

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 133

6153CH07.qxd 3/20/06 5:02 PM Page 133

arrow keys. If you’re thinking that we need a <No Key> event, then you’re on the right track,
but if we stopped bears moving in a <No Key> event, then what would happen if the player
was pressing another key such as the spacebar? The spacebar isn’t used in this game, but it’s
still a key—so the <No Key> event would never be called and the koala would never stop!

Instead of using a <No Key> event, we’re going to use a Begin Step event. This will keep
checking if the bear has reached the next grid square, and stop it when it does. We need to use
a Begin Step rather than any other kind of Step event, because the Begin part means that the
actions will be called at the beginning of each step—before the Keyboard events. Therefore,
we can stop the bear moving in Begin Step and start it again in <Left> if the player is pressing
the Left key. If we used a Step or End Step, then these events would happen the other way
around: <Left> would start the bear moving and Step would stop it again—canceling the effect
of the pressing the key. Once you’ve added the actions that follow, try changing the Begin Step
event to a <No Key> or a normal Step event and seeing what effect it has on the game.

Adding a Begin Step event to the koala object:

1. Add a Step, Begin Step event to the koala object and include the Check Grid action.
Set Snap hor to 40 and Snap vert to 40, but this time leave NOT disabled.

2. Include a Start Block action followed by a Move Fixed action. Set Speed to 0 and select
the center square to stop the koala moving.

3. Include a Change Sprite action, indicating the standing koala sprite with Subimage set
to -1.

4. Include an End Block action and close the koala object’s properties.

■Caution When setting a Move Fixed action with a speed of 0, you must also select the center square of
the direction grid. If no direction square is selected at all, then the action is ignored!

Okay, hopefully that makes sense so far, but we still haven’t explained why we made the
wall object a parent of the koala. While this may be against the laws of nature, it’s not against
the laws of Game Maker, and it’s actually saved us a lot of work. Koalas need to stop for both
walls and other koalas so we could add extra actions to check for koalas in the same way we
did earlier. However, this happens automatically when we make walls a parent of koalas, as
Game Maker now treats koalas as a special kind of wall!

Before we can test our work, there is something we need to fix. When we were making the
front-end we indicated that pressing the Esc key should not automatically end the game. How-
ever, we need some way of quitting a level once it is running, so we’ll use a controller object to
take us back to the front-end when the Esc key is pressed.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL134

6153CH07.qxd 3/20/06 5:02 PM Page 134

Creating the controller object:

1. Create a new object called obj_controller and leave the sprite as <no sprite>.

2. Add a Key Press, Others, <Escape> key event. Include the Different Room action and
indicate the front-end room.

To test our basic maze game system, we’ll need to create a test level by adding a new room
between the front-end and closing rooms.

Creating a test room:

1. Right-click the completion room in the resource list and select Insert Room from the
pop-up menu. This will insert the new room between the two existing rooms.

2. Switch to the settings tab and give the room an appropriate name and caption.

3. Switch to the backgrounds tab and give the room the background.

4. Set the Snap X and Snap Y on the toolbar to the correct cell size of 40 pixels.

5. Select the objects tab and create a maze out of instances of the wall object. Leave the
top row free, as we’ll need this space for displaying other game information later on.
Place three or four instances of the koala object in the maze and put one instance of
the controller object in the top-left corner of the room. The room should then look
something like Figure 7-5.

Figure 7-5. Here’s our first maze.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 135

6153CH07.qxd 3/20/06 5:02 PM Page 135

Save your work and run the game to test it. Check that the koalas don’t get stuck walking
around and that the animations play correctly. Also notice how the koalas react when they
bump into each another. If you need it, you’ll find this version of the game in the file
Games/Chapter07/koala2.gm6 on the CD.

Save the Koala
Most of what we have done so far could be used for any kind of maze game, but now we’ll
begin adding features specific to the Koalabr8 game design. The aim of each level is to get all
the koalas out alive, so in this section we’ll add exits and check whether all koalas have been
rescued before moving on to the next level.

We’ll begin by creating objects for the two different kinds of exits: one that can be used by
any number of koalas to escape, and one that is destroyed after being used by just a single
koala. When a koala collides with an exit, we know it has escaped the level and so we can
destroy the koala instance. We’ll use Game Maker’s built-in mechanism for controlling the
player’s lives to indicate how many koalas have been saved in each level.

Creating the exit objects:

1. Create sprites called spr_exit1 and spr_exit2 using Exit1.gif and Exit2.gif and
enable the Smooth edges option for them both.

2. Create an object called obj_exit1, and give it the first exit sprite and a Depth of 10.
We only want the koala to disappear when it’s completely on top of the exit, so add a
Collision event with the koala object and include a Check Grid conditional action.
Select Other from Applies to (the koala) and set Snap hor and Snap vert to 40.

3. Include a Start Block action.

4. Include a Destroy Instance action and select Other from Applies to (the koala).

5. Include a Set Lives action with New Lives set to 1 and the Relative option enabled.

6. Finally, include an End Block action and close the properties form.

7. Now create another exit object in exactly the same way using the sprite for exit2. The
only difference is that you need to include an additional Destroy Instance action after
step 4 with Applies to set to Self (the exit).

We’ll use the controller object to check when all koalas have been rescued. It will also
display the rescued koalas along the top of the screen using the Draw Lives action.

Adding events to handle rescued koalas in the controller object:

1. Create a sprite called spr_rescued using Rescued.gif and enable the Smooth edges
option.

2. Reopen the properties form for the controller object by double-clicking it in the
resource list.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL136

6153CH07.qxd 3/20/06 5:02 PM Page 136

3. Add a Create event and include the Set Lives action with New Lives set to 0. We’re
using lives to represent rescued koalas—so the lives need to start at 0.

4. Add a new Step, Step event and include the Test Instance Count action. Set Object to
the koala object and Number to 0. When there are no koala instances left, then the
player must have completed the level.

5. Include the Start Block action followed by the Sleep action. Set Milliseconds to 2000
(2 seconds).

6. Include the Next Room action and set Transition to Create from center (or any other
one that takes your fancy).

7. Include the End Block action to complete the actions for this event.

8. Add a new Draw event. Switch to the draw tab and include the Draw Sprite action. Set
Sprite to the rescued sprite, X to 10, and Y to 0. Leave the Relative option disabled, as
we want this sprite to be drawn in the top left of the screen.

9. Include the Draw Life Images action with Image set to the standing koala sprite, X to
150, and Y to 0. This will draw the sprite once for each of the player’s lives (saved
koalas).

■Caution Draw actions all have a light yellow background and can only be used in Draw events. If you
put them in a different event, then they are ignored.

Now add some exits to your test room and give it a quick play to make sure they are
working correctly. You might also want to add a second test room (remember that you can
duplicate rooms). You’ll find the current version in Games/Chapter07/koala3.gm6 on the CD.

Creating Hazards
Our maze is rather dull at the moment, so it’s time to create some challenges by making it a lot
more dangerous for the koalas. We’ll start by adding TNT that blows koalas off the level if they
touch it and restarts the level. This may sound like an easy hazard to avoid, but carefully posi-
tioned TNT can present quite a challenge when you’re controlling several koalas at once!

We’ll begin by creating a dead koala (how often do you get to say that?). Dead koalas will
fly off the screen in an amusing fashion—nothing too gory, as we want to keep this a family
game. We’ll do this using Game Maker’s gravity action, as that will do most of the work for us
and make the movement look realistic.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 137

6153CH07.qxd 3/20/06 5:02 PM Page 137

Creating the dead koala object:

1. Create a sprite called spr_koala_dead using Koala_dead.gif and enable Smooth edges.

2. Create a new object called obj_koala_dead using this sprite. Give it a Depth of -10 to
make sure it appears in front of all other objects.

3. Add a Create event and include the Move Free action. Set Direction to 80 and Speed
to 15.

4. Include the Set Gravity action with Direction set to 270 (downward) and Gravity set
to 2.

5. Add an Other, Outside room event and include the Sleep action. Set Milliseconds to
1000.

6. Include the Restart Room action with Transition left as <no effect>. It would soon
annoy the player to have to wait for a transition to restart the level each time.

Next we’ll create our TNT object. It is a very simple object that just sits there and turns
koalas into dead koalas when they collide with it.

Creating the TNT object:

1. Create a sprite called spr_TNT using TNT.gif and enable Smooth edges.

2. Create a new object called obj_TNT using this sprite.

3. Add a Collision event with the koala object. Include the Change Instance action and
select Other from Applies to, in order to change the koala. Set Change into to the dead
koala object and set Perform events to yes.

We’ve now actually created a bug (an unintentional error) in our game. Remember that
the controller object moves to the next room when there are no koalas left on the level—
assuming that the player must have rescued them all. However, if the last koala is killed by
TNT, then there will also be no koalas left on the level—but the player has failed! Conse-
quently, we must alter the controller object so that it also checks that there are no dead koalas
before moving to the next level.

Editing the controller object to fix the dead koala bug:

1. Double-click the controller object in the resource list and select the Step event.

2. At the top of the action list, include another Test Instance Count action and set Object
to the dead koala. As this appears directly above the old check for koalas, the block of
actions will only be performed if both conditions are true.

Test this out by adding some TNT to your levels. It’s actually possible to build very difficult
levels just using TNT. The level, shown in Figure 7-6, looks almost impossible to solve, but it is
solvable once you work out how to use the extra wall piece on the left. It’s designing puzzles
like this that will make this game interesting.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL138

6153CH07.qxd 3/20/06 5:02 PM Page 138

Figure 7-6. This is a surprisingly difficult maze level.

TNT is fun, but moving hazards should add an even greater challenge, so we’re going to
create two kinds of circular saws. One will move vertically and the other will move horizon-
tally, but both will leave koalas wishing they had stayed in bed!

Creating the saw objects:

1. Create sprites called spr_saw_horizontal and spr_saw_vertical using
Saw_horizontal.gif and Saw_vertical.gif. Enable the Smooth edges
option for both.

2. Create an object called obj_saw_horizontal and give it the horizontal sprite. Add a
Create event and include the Move Fixed action. Select the right arrow and set Speed
to 4. This is slightly slower than the speed of the koala to give the player a chance to
escape.

3. Add a Collision event with the wall object and include the Reverse Horizontal action.

4. Add a Collision event with the koala object. Include the Change Instance action and
select Other from Applies to, in order to change the koala. Set Change into to the dead
koala object and set Perform events to yes.

5. Create an object called obj_saw_vertical and give it the vertical sprite. Add a Create
event and include the Move Fixed action. Select the down arrow and set Speed to 4.

6. Add a Collision event with the wall and include the Reverse Vertical action.

7. Finally add a Collision event with the koala object. Include the Change Instance
action and select Other from Applies to. Set Change into to the dead koala object
and set Perform events to yes.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 139

6153CH07.qxd 3/20/06 5:02 PM Page 139

At this point, you might be wondering why having the wall as a parent doesn’t mess things
up for the koala’s collisions with saws. After all, if koalas are a “special kind of wall,” then why
don’t the saws just turn themselves around when they collide with koalas? Fortunately Game
Maker automatically chooses the most specific collision event and ignores the other (a koala is
a koala first and only a wall second). However, if you remove the collision event between the
saw and the koala, then saws will start treating koalas as if they were walls again!

Create some new levels using the moving saws. You might also want to add a cheat in the
controller object, so that pressing the N key moves you to the next room and pressing the P
key moves you to the previous room. You should know how to do this by now. You’ll find the
current version in Games/Chapter07/koala4.gm6 on the CD.

Tiles
The walls of our maze need brightening up a bit, and we’re going to do this by using tiles. Tiles
work by creating a new background resource that consists of a number of small, identically
sized images (40✕40 pixels in our case). This is called a tile set, and we’ve created one that con-
tains all the various combinations of wall connections that are needed to draw a maze (see
Figure 7-7).

Figure 7-7. This tile set contains 16 wall segments.

Creating the tile set:

1. Create a new background called back_tiles using the file Wall_tiles.bmp. Enable the
Transparent option so that the green areas appear transparent.

2. Enable the Use as tile set option. The properties form will then become larger to dis-
play all the properties of a tile set.

3. Set Tile width and Tile height to 40 and leave the other values as 0. The image will now
show an exploded view of the tiles, as shown in Figure 7-8.

4. Close the properties form.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL140

6153CH07.qxd 3/20/06 5:02 PM Page 140

Figure 7-8. Add the tile set to the game.

Now we can begin adding these tiles to the rooms. You might have noticed that there is a
special tab in the room properties form for this. This allows us to add tiles to the background
image of the room. However, these tiles have no behavior and instances won’t react to them,
so how do we stop the koalas from moving through the walls? The answer is that we use the
wall object we’ve already created and place instances of this object on top of the tiles. Once
this is done, we make the wall object invisible, so that the player doesn’t see the ugly walls in
the game. When the koalas walk around, they will still be blocked by the invisible wall
instances, but the player only sees the nice-looking tiles.

Adding tiles to your rooms:

1. Double-click the first room in the resource list and use the right mouse button to
delete all of the wall instances in the room.

2. Click the tiles tab. Use the menu halfway down on the left to select the background
with the tiles. Once this is done, the tiles will be displayed in the left top.

3. Click on one of the tile images to select a particular tile, and it will become outlined.
Now you can place and remove copies of that tile using the left and right mouse but-
tons in the same way as for instances. You can also hold the Shift key to add multiple
copies.

4. Select and place tiles in order to create a maze that looks like the one in Figure 7-9.

5. Select the objects tab and carefully place instances of the wall object on top of the
wall tiles.

6. Repeat the process for the other rooms.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 141

6153CH07.qxd 3/20/06 5:02 PM Page 141

Figure 7-9. Add tiles to the room.

■Tip When creating levels, you may find it helpful to hide tiles or objects using the magnifying glass menu
in the toolbar. This allows you to temporarily hide all the tiles or objects in the room. However, you cannot
hide objects while the objects tab is selected or hide tiles while the tiles tab is selected.

Finally we must make the wall object invisible so that the tiles can be seen instead.

Making the wall object invisible:

1. Double-click the wall object in the resource list to open the properties form.

2. Disable the Visible option to make it invisible.

Test the game again to make sure that the tiles are displayed correctly and koalas cannot
walk through walls. You’ll find the current version in the file Games/Chapter07/koala5.gm6 on
the CD.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL142

6153CH07.qxd 3/20/06 5:02 PM Page 142

Adding Additional Hazards
You can already build some interesting levels using just the TNT and the saws, but we’re going
to add a couple of other features to add a bit more variation.

Locks and Switches
Locks block the path of koalas in the maze and open only when the corresponding switch is
pressed. We’ll create three different types of locks: the blue lock will disappear forever once its
switch is activated, the yellow lock will reappear 5 seconds later, and the red lock will only stay
open while the switch continues to be pressed. So in this final case one koala must keep the
lock open for another one to pass.

We’ll begin with the blue switch since this is the simplest to do. We’ll use two objects: one
for the lock, and one for the switch. The switch sprite will contain two subimages showing the
switch in closed and open positions, and we’ll use actions in the switch object to display the
correct one.

Creating the blue lock and switch objects:

1. Create sprites called spr_lock_blue and spr_switch_blue using Lock_blue.gif and
Switch_blue.gif. Enable the Smooth edges option for them both. Notice how the
switch sprite has two frames of animation showing the switch in different positions.

2. Create a new object called obj_lock_blue and give it the blue lock sprite. Enable the
Solid option. Set Parent to the wall object so that it behaves like a wall (blocking
koalas).

3. Create a new object called obj_switch_blue and give it the blue switch sprite. Set
Depth to 10 to make sure that it appears behind other objects.

4. Add a Create event and include a Change Sprite action. Select the blue switch sprite
and set both Subimage and Speed to 0. This will display the first subimage and will
stop the sprite from animating.

5. Add a Collision event with the koala object and include the Destroy Instance action.
Select Object from Applies to and select obj_lock_blue from the menu.

6. Include the Change Sprite action, selecting spr_switch_blue with a Subimage of 1 and
a Speed of 0.

The other switches are a bit more complicated as they both involve temporarily removing
the locks. The trick here is to move the lock to a place just outside the room and set an alarm
clock. When the time is up, we can use the Jump to Start action to bring the lock back into
play. However, we will need to make sure that there is nothing in the way when we bring it
back and set the alarm clock to try again later if there is.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 143

6153CH07.qxd 3/20/06 5:02 PM Page 143

Creating the yellow and red lock and switch objects:

1. Create sprites called spr_lock_yellow and spr_switch_yellow using Lock_yellow.gif
and Switch_yellow.gif. Enable the Smooth edges option for them both.

2. Create a new object called obj_lock_yellow and give it the yellow lock sprite. Enable
the Solid option. Set Parent to the wall object.

3. Add an Alarm, Alarm 0 event and include the Check Empty action. Set X to xstart, Y
to ystart, and Objects to all. Using the variables xstart and ystart will check that
there are no collisions at the start position of the lock.

4. Switch to the move tab and include the Jump to Start action.

5. Include the Else action followed by a Set Alarm action. Set Number of Steps to 2 so
that the lock tries again quite quickly.

6. Create a new object called obj_switch_yellow and give it the yellow switch sprite. Set
Depth to 10 to make sure that it appears behind other objects.

7. Add a Create event and include a Change Sprite action. Select spr_switch_yellow and
set Subimage and Speed to 0.

8. Add a Collision event with the koala object and include the Jump to Position action.
Select Object from Applies to and select obj_lock_yellow from the menu. Set X to 1000
and Y to 0 to make it move way off the screen.

9. Add a Set Alarm action with 150 Steps (5 seconds). Select Object from Applies to and
select obj_lock_yellow from the menu.

10. Finally add the Change Sprite action, selecting spr_switch_yellow with a Subimage of
1 and a Speed of 0.

11. Reopen the properties form for the yellow lock and select the Alarm 0 event. Include a
Change Sprite action at the top of the list of actions. Select Object from Applies to and
select obj_switch_yellow from the menu. Select spr_switch_yellow and set Subimage
and Speed to 0. This will return the switch to the normal position.

12. Create the red lock and the red switch in the same way. However, this time set the
alarm to only 2 Steps so that it resets as soon as the koala moves away from the switch.

If you try using them in your rooms, you’ll see that you can use switches to create some
very interesting and tricky levels.

A Detonator
This one’s going to be very easy. The detonator object will blow up all the TNT on a level—
making the koala’s life much easier. As with the switches, we’ll use a sprite that consists of two
subimages to show the detonator before and after the explosions.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL144

6153CH07.qxd 3/20/06 5:02 PM Page 144

Creating the detonator object:

1. Create a sprite called spr_detonator using Detonator.gif and enable the Smooth
edges option.

2. Create a new object called obj_detonator and give it the detonator sprite. Set the
Depth to 10.

3. Add a Create event and include the Change Sprite action. Select the detonator sprite
and set Subimage and Speed to 0.

4. Add a Collision event with the koala object and include a Destroy Instance action.
Select Object from Applies to and select obj_TNT from the menu.

5. Include a Change Sprite action. Select spr_detonator, and then set Subimage to 1 and
Speed to 0.

Detonators can potentially make your levels very easy, so make sure you put them in
locations that are very difficult to reach!

Rocks
Rocks can be pushed around by koalas, as long as there is free space to push them into. Rocks
will block moving saws and cause TNT to explode when they are pushed onto it—harmlessly
destroying both the rock and TNT. When a rock is pushed onto a switch or detonator, it will
also be destroyed, allowing the player to remove switches without pressing them.

Creating the basic rock object:

1. Create a sprite called spr_rock using Rock.gif and enable the Smooth edges option.

2. Create a new object called obj_rock and give it the rock sprite. Enable the Solid option
and set Depth to -5 so that it appears in front of most objects but behind the dead
koala object.

To push the rock in the right direction, we need to know which direction the koala was
moving in when it collided with the rock. We can find this out using the variables hspeed (the
current horizontal speed of an instance) and vspeed (the vertical speed of an instance). The
koala will be the other object involved in the collision, so its speed is indicated by other.hspeed
and other.vspeed. The koala moves with a speed of 5 and the cell size is 40, so multiplying the
koalas’ horizontal speed by 8 will give us the rock’s new x-position (5 ✕ 8 = 40). Likewise, mul-
tiplying the koala’s vertical position by 8 will give us the rock’s new y-position. Therefore, we
can use this calculation to verify that there is nothing in the way of the new position and move
there.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 145

6153CH07.qxd 3/20/06 5:02 PM Page 145

Adding actions to the rock object to allow koalas to push it around:

1. Add a Collision event with the koala object.

2. Include the Check Object action and indicate the wall object. Set X to 8*other.hspeed
and Y to 8*other.vspeed. Enable both the Relative and NOT options.

3. Add a similar Check Object action for the rock object using all the same settings.

4. Add two more similar Check Object actions for the horizontal and vertical saw objects
using all the same settings.

5. Finally, include a Jump to Position action. Set X to 8*other.hspeed and Y to
8*other.vspeed, and enable the Relative option.

This will do the trick. You might want to add some rocks to your levels and push them
around to check that they work correctly. Next we need to make the rock destroy TNT,
switches, and the detonator.

Adding actions to the rock object to make it destroy things:

1. Add a Collision event with the TNT object and include the Destroy Instance action
with default settings (to destroy the rock). Include another Destroy Instance action
and select Other (to destroy the TNT) from the Applies to option.

2. Add a Collision event with the detonator object and include the Destroy Instance
action. Select Other from the Applies to option (to destroy the detonator).

3. In the same way, add Collision events with the three switches and include Destroy
Instance actions that apply to the switches.

We also need to make sure that the saws do not move through rocks.

Adding events to the saw objects to make them turn for rocks:

1. Double-click the horizontal saw object in the resource list to open its properties form.

2. Add a Collision event with the rock object and include the Reverse Horizontal action.

3. Close the properties form.

4. Double-click the vertical saw object in the resource list to open its properties form.

5. Add a Collision event with the rock object and include the Reverse Vertical action.

6. Close the properties form.

Now go ahead and make levels using every combination of locks, switches, detonators,
and rocks you can think of. You can create an almost endless combination of different chal-
lenges. For example, Figure 7-10 shows a level in which the koalas must move the rocks
around very carefully if they are to reach the exit (it is solvable). You can find the current
version in the file Games/Chapter07/koala6.gm6 on the CD.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL146

6153CH07.qxd 3/20/06 5:02 PM Page 146

Figure 7-10. You can make quite difficult levels just using rocks.

Finishing the Game
That’s just about it, but as always there are some loose ends we can tie up to make the game a
bit more presentable and user-friendly.

Now that we have so many features, it is possible to get into a situation on a level where
the level can no longer be completed. Consequently, we need to give the player a way to
restart the level when this happens. We’ll add a button to do this in each room and allow
them to use the R key as a shortcut for restarting the level as well.

Creating a restart button object:

1. Create a sprite called spr_restart using Restart.gif.

2. Create a new object called obj_restart and give it the restart sprite. Add a new Mouse,
Left Pressed event. Include the Play Sound action using the click sound and follow it
with the Restart Room action.

3. Add a Key Press, Letters, R event and include the Restart Room action.

4. Add an instance of this new object into the top-right corner of every level room.

Next we’ll add a mechanism to save the game. Rather than letting the player do this, we’ll
get the controller object to automatically save the game at the start of each level.

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL 147

6153CH07.qxd 3/20/06 5:02 PM Page 147

Save the game in the controller object:

1. Double-click the controller object in the resource list to open its properties form.

2. Add an Other, Room Start event and include the Save Game action to save the game.

Finally, we should add some sound effects. You should be able to do this by yourself, so
here is a list of the ones that are required.

Adding sound effect to objects:

1. Explosion.wav needs to play in the Collision event between the TNT and the koala and
the Destroy event of the TNT.

2. Saw.wav needs to play in the Collision events between both the saws and the koala.

3. Saved.wav needs to play in the Collision event between the two exit objects and the
koala. Put it inside the block, so that it is only played when the koala is removed.

4. Rock.wav needs to play in the Collision event between the rock objects and the koala.
However, you only want to play it when the rock actually moves, so add Start Block
and End Block around the Jump to Position action and include the Play Sound action
within it.

You might also want to attempt to add a sound for pressing the switches and opening
locks. However, this is a lot more difficult than it seems because Collision events happen con-
stantly while the koala stands on a switch. So if you play a sound in this event, it will also play
continuously in a very annoying way! There are several (complex) ways of working around
this, and we have provided a sound effect if you fancy the challenge.

Finally, you might want to update the game information to include details about the dif-
ferent hazards—although you might want to let the players find out for themselves!

Congratulations
We hope you enjoyed creating Koalabr8 and that you’ve had fun designing challenging levels.
You may get some more ideas by playing ours from Games/Chapter06/koala7.gm6 on the CD.
The great thing about puzzle games is that the possibilities are endless, and we look forward
to seeing what you come up with.

The two Game Maker concepts that we have introduced in this chapter are Grid actions
and tiles. Both Grid actions and tiles are very useful for making this kind of game. There is
actually a lot more to learn about tiles, such as creating different layers. You can use layers to
let characters walk in front of certain tiles and behind others, giving a feeling of depth. If you
want to know more, then take a look at the Game Maker documentation on tiles.

Anyway, we hope you like koalas, because you haven’t seen the last of them yet! In the
next chapter we’ll be using Koalabr8 as an example of how designing good levels and features
can make your game more fun to play. So time to take a rest from programming for a while
and start thinking of some new ways of keeping koalas “entertained.”

CHAPTER 7 ■ MAZE GAMES: MORE CUTE THINGS IN PERIL148

6153CH07.qxd 3/20/06 5:02 PM Page 148

Game Design: Levels and
Features

Even the most captivating game ideas will eventually become dull if the challenges never
change. Good level design is about providing players with new and interesting challenges as
they progress through the game. Usually this requires a steady flow of fresh features that intro-
duce new equipment, opponents, enemies, or obstacles into the gameplay. Creating the right
kind of features is as important to good level design as the way those features are used in the
levels themselves. In this chapter, we’ll take a look at the issues surrounding level design and
try to give you some pointers for designing your own games.

Selecting Features
So you’ve created a game prototype with a solid core mechanic and carefully tweaked the
gameplay with the help of your friends. Everyone thinks it could be really good and you just
need another 25 levels to turn it into a finished game. Sitting down with your designer’s note-
book, you begin to make a list of all the extra features you want to include—but where do you
start, and how do you tell a good feature from a bad one?

The good news is that coming up with plenty of ideas is not usually a problem at this
stage. If you start running dry, try showing your game to some of your game-playing friends.
Providing your basic mechanics work okay, they’ll usually start pouring forth their own sug-
gestions for how you could expand upon it. The bad news is that even a game with amazing
potential can end up being dreadful if you don’t get the levels and features right. Learning to
distinguish a feature idea with potential from a “nonstarter” is an essential skill for a designer
to develop, so in this section we’ll pass on a few tips.

Features can be divided into two groups: those that change the abilities available for the
player to use, and those that change the level obstacles that the player has to overcome. Here’s
a list of some different types of features that you might consider including:

• New features for the player(s) to use:

• Abilities (e.g., attack moves, swimming, flying)

• Equipment (e.g., weapons, armor, vehicles)

• Characters (e.g., engineer, wizard, medic)

• Buildings (e.g., garage, barracks, armory) 149

C H A P T E R 8

6153CH08.qxd 3/21/06 9:52 AM Page 149

• New level features for the player(s) to overcome:

• Opponents (e.g., with new abilities, buildings, or equipment)

• Obstacles (e.g., traps, puzzles, terrain)

• Environments (e.g., battlefields, racing tracks, climate)

A game doesn’t need to include all the types of features listed here, and the first step is to
decide which types you want to include in your game. We’re going to use the Koalabr8 game
from the previous chapter as an example. This game only includes obstacle-based features,
but there’s no real reason why it couldn’t include new player abilities, equipment, or charac-
ters as well. However, we decided to stick to obstacles and save these other options for a
sequel. Making these kinds of choices from the start can help to focus your game design and
give it a clearer identity. If you try to include too many different types of features, you run the
risk of creating a mishmash of ideas with no identifiable strengths.

So before you begin thinking of feature ideas, give some serious thought to the kind of
progression you want to see running through your game. Is it about developing the equip-
ment and abilities of a single character or building up a specialist team? Will levels force the
player to apply their skills in different kinds of environments, or just pit them against increas-
ingly challenging obstacles? Once you’ve made some of these kinds of decisions, then you’re
ready to sit down with some friends and start brainstorming ideas.

Pie in the Sky

So the koala picks up this jetpack, right, and everything goes 3D and you have to start

flying it through the maze at like 1,000 miles an hour . . .

Whenever you ask people to brainstorm for you, you can guarantee that many ideas will fall
into this category. Faced with such a creative opportunity, it’s easy to let enthusiasm get the
better of us—especially if we’re not the one who has to do all the work! However, as the game’s
designer and programmer, it should be easier for you to spot ideas that are impossible or just
too much work. Be gentle with your collaborators and try to bring them down to earth without

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES150

6153CH08.qxd 3/21/06 9:52 AM Page 150

too much of a bump. If you reject all their ideas before they finish their sentence, they’ll
quickly stop contributing! Explain how the same idea might be turned into something more
feasible, and don’t dismiss any ideas until you’ve finished the brainstorming process. It’s worth
keeping everyone brainstorming, as it’s often the case that people who have the craziest ideas
eventually come up with a brilliant idea that no one else would have thought of.

Do You Have That in Blue?

Yeah—on some levels we could have like, plastic explosives! Awesome! They’d be like the

TNT, but sort of plastic looking . . .

Equivalent features are another kind of idea that designers need to be wary of. These are fea-
tures that may look different, but actually perform a very similar function to an existing
feature. There’s nothing wrong with including equivalent features, as long as you don’t try to
pretend that they’re anything more than that. For example, imagine that halfway through the
Koalabr8 levels we introduced plastic explosives alongside TNT. As with any new feature, the
player would approach them cautiously and try to figure out how they work. One way or
another, they would eventually discover that they’re exactly the same as TNT and feel slightly
stupid and cheated by the whole experience.

Instead, imagine that we decided to theme the game so that half the levels were set in
the doctor’s workshop and half the levels were set in his laboratory. Every obstacle in the
workshop could then have an equivalent high-tech feature in the laboratory setting: the TNT
becomes plastic explosives, the rotating saw becomes a laser, the padlocks become electronic
doors, and so forth. This approach would make the equivalence more obvious to the player
and reduce the chances of their expectations being falsely raised. This way, they can appreci-
ate the visual variation as something they have gained rather than something they have lost
because they were expecting more from it.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES 151

6153CH08.qxd 3/21/06 9:52 AM Page 151

Starting an Arms Race

Of course, once the koalas get into their nuclear tanks, then the TNT and circular saws

can’t hurt them any more . . .

If you plan to improve the player’s equipment or abilities, then you need to consider the esca-
lating effect this can have on the rest of the game. Everybody loves the idea of über weapons
and, if you’re aware of the pitfalls, there’s no reason why they can’t be a great addition to your
game. However, problems can arise because über weapons have a tendency to make all previ-
ous features redundant. Having a nuclear tank that’s invulnerable to TNT and saws would be
a lot of fun for one level, but where do we go from there? We need something to challenge the
player on the next level, so we invent equivalent features that work against tanks (perhaps
land mines and robot drills). Of course, land mines and robot drills will be no use against the
koala’s alien flying saucers on the following level . . .

Hopefully, you can see that it’s possible to end up in an arms race between the player and
the game in which the features get increasingly powerful but the gameplay doesn’t actually
progress at all! The player faces exactly the same challenges with a tank and a land mine as
they do with a koala and TNT.

You may think that taking the tank away from the player will solve everything, but this is
like giving a child a new toy only to snatch it away again moments later. A better way is to
create features that are less powerful in the first place by including a trade-off in their design.
We’ll discuss the idea of trade-offs more in the next design chapter, but we could achieve this
by making the tank just resistant to TNT (perhaps it could survive three hits) as well as only
moving at half the speed of the koala. Now the tank becomes a tool that can be helpful in cer-
tain situations (clearing paths), rather than something that the player wants to use all the
time. More important, it’s now a feature that varies the challenges of the game and provides
a new angle on the gameplay—rather than just repackaging an old one.

One-Trick Ponies

On this one level, the doctor’s pet psycho-whale swallows all the koalas and they have to

escape from his intestines before they get digested!

As a game developer, you should start measuring every potential feature in terms of the
quantity and quality of gameplay it creates. It’s easy to end up with many more ideas than it’s
possible to create, so you must carefully choose the features that provide the greatest return.
In particular it’s often a good idea to avoid “one-trick ponies”—features that would undoubt-
edly be cool on one level but couldn’t be used on any others. You may actually decide that the
psycho-whale level is such a quality idea that you don’t mind only using it once (as a final
level, for example). However, be aware that you might be able to create a number of features
in the same time that can be used on several different levels. In general, such ideas can be a
bonus to a game that is already brimming with features, but are probably best avoided until
then.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES152

6153CH08.qxd 3/21/06 9:52 AM Page 152

Emerging with More Than You Expected

No—you’re not supposed to use it like that . . . oh—cool!

Game designers like to talk about emergence as it’s one of the most exciting (and potentially
dangerous) aspects of game design. Emergence is what happens when the rules of a game
interact with each other so that the player can do something the designer hadn’t predicted.
Emergence can either be an uplifting surprise or terrible shock, depending on the situation.
It’s difficult to know whether a game contains emergence, unless you know what its designers
intended, so we’ll use examples from a PlayStation game called Hogs of War, about which we
have insider knowledge.

Hogs was a comical war game where players took turns taking potshots at each other’s
squad until one side was wiped out (see Figure 8-1). There were plenty of crazy weapons to
choose from, and surviving pigs could be promoted to specialist roles within their teams. The
final level of the single-player game pits the player against the unstoppable “Team Lard” in the
ultimate battle for control of the “swill mines.” At the start of this level, the battlefield appears
to be defended by a single enemy pig hauled up in a pillbox, but major reinforcements soon
arrive on the scene. We designed this level to provide the player’s biggest challenge yet, requir-
ing them to use all their skill and knowledge to win the battle. However, in practice we also got
two different emergent solutions that we never expected.

The first of these was an example of “good emergence,” where the player used their inge-
nuity and lateral thinking to win the game fair and square. Rather than face the enemy in a
straight firefight, they turned to the landscape to help them gain an advantage. The player’s
weakest pigs were quickly wiped out on this level, but they could be sacrificed to knock enemy
pigs into pools of poisonous grime that surrounded the mines. The player could then use pigs
trained in espionage to hide from the enemy until they all died from the effects of poison.
Okay, so it wasn’t the most valiant solution, but it was a clever one and it emerged from the
interaction between the poison and hide features in the game.

The other emergent solution was an example of “bad emergence” as it exploits an interac-
tion between oversights in the game’s programming in order to complete the level. It was
possible to use a jetpack to land a commando pig on the roof of the enemy pillbox in the very
first turn of the game. The game’s programming wouldn’t normally allow its pigs to leave the
safety of a pillbox, but another pig standing on its head (so to speak) confused it into coming
out and attacking the commando. Out in the open, the player could use their best attacks to
quickly kill it—before the reinforcements arrived. Since there were now no enemy pigs left on
the battlefield, the game’s programming concluded that the player had won the battle and fin-
ished the game. Using this method, the final level could be completed in two turns and
without the player’s team ever having to fight the reinforcements!

Of course, the problem with emergence is that you can’t deliberately design it into a
game; otherwise it wouldn’t be emergent! Nonetheless, you can create features that encourage
interplay with other game features and hope that good things come out of it. At the same time,
you need to make doubly sure that this interplay doesn’t reveal oversights in your program-
ming that create the “bad” rather than the “good” kind of emergence. Fortunately, there’s
another kind of emergence between the programmer and level designer that’s much easier to
control, and we’ll discuss it more in the section “Emerging Springs,” later in this chapter.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES 153

6153CH08.qxd 3/21/06 9:52 AM Page 153

Figure 8-1. A Commando pig encourages an enemy Grunt to take a plunge in Hogs of War
(reproduced by kind permission of ZOO Digital Publishing Ltd.).

Designing Levels
Okay, so you’ve whittled your feature ideas down to a manageable shortlist of those with the
most potential. Now before you immediately rush off and start programming, you first need to
consider how you’re going to use these features to structure your levels. It might be that all the
best-sounding features are too hard for introductory levels, so you need to swap a few ideas
for simpler ones. Levels and features will always continue to evolve as you work on them, but
it certainly helps to make an overall plan from the start. In this section, we’ll discuss some of
the skills that a designer can use to help them think about this process and come up with a
well-structured level plan.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES154

6153CH08.qxd 3/21/06 9:52 AM Page 154

The Game Maker’s Apprentice
The title of this book conjures up images of a young apprentice learning a mysterious craft
from a slightly crazy old professor. However, if you were thinking of yourself as the apprentice
in this scenario, then think again. “The Game Maker’s Apprentice” is actually a reference to the
game player, which makes you (as the Game Maker) the crazy professor! Being a good game
designer has a lot in common with being a good teacher—and just realizing this can improve
your approach to game design. Inexperienced designers often see players as their opponents,
and try to trick or outwit them by creating impossible challenges. As Phil Wilson discovered
from his own first game designs (in this book’s foreword), this does not help to make games
fun! A successful game designer needs to treat players like their apprentices, balancing the
game’s theatrical threat of failure with a true desire to train the player to master the game.
Once you accept this as your goal, you’ll get a lot more satisfaction from players completing
the challenges you set for them, as it proves that you’re a successful game designer rather than
a poor opponent!

In the last design chapter, we learned that games shouldn’t be too hard or too easy to
complete. This is not as straightforward as it seems because players have different levels of
ability, but including difficulty modes and optional subgoals can help (as we saw in the Evil
Clutches example). However, level designers also need to consider how players’ abilities
develop as their experience with the game grows. A task that was quite challenging for the
player on level 1 may have become quite easy by the time they reach level 20. Knowing some-
thing about the way that people learn really can help a designer to create levels that pitch the
difficulty correctly as players progress through the game.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES 155

6153CH08.qxd 3/21/06 9:52 AM Page 155

Learning Curves
In general, the more time we spend on a task, the better we become at doing it. Once you’ve
mastered the basics of a new skill, it’s easy to improve by spending more time practicing it.
However, the more you improve, the harder it becomes to make further progress, until eventu-
ally you seem to stop improving altogether. Figure 8-2 shows a model of how this process
works for something like learning to juggle. We’ve taken the number of successful throws
and catches that a learner makes in a minute as a measure of their juggling skill. You can see
from the graph (or if you’ve ever tried it) that it takes quite a lot of effort to first grasp the
technique for juggling, and it may be a long time before a beginner can make even a dozen
successful catches in a single minute. Nonetheless, sooner or later they will get the hang of it
and their catches per minute will start to increase rapidly for a while. However, once they
reach the stage where they rarely drop balls, it becomes a lot harder to make further improve-
ments. Their skill will still increase as they refine their precision and technique, but these
improvements will get smaller and it will take longer to increase their catches per minute by
the same amount.

Figure 8-2. A learning curve shows how a learner’s performance changes with practice.

Learning curves apply to computer games, too, and taking this pattern into account can
improve a game’s level designs. To understand how this information can help a designer, it’s
useful to think of learning curves as having the three different stages shown in Figure 8-3.
These stages separate the emotional states that a player often goes through when they face
the kind of challenge that a new computer game presents:

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES156

6153CH08.qxd 3/21/06 9:52 AM Page 156

Figure 8-3. The three stages of a learning curve tell us about the player’s likely emotional state.

Stage One: At the start of a completely new challenge, players have to absorb and process
a lot of information at the same time. This means their progress is slow and there is a big
risk of frustration as a result. People are often afraid of failure, too, so if the challenge
appears too great, they may decide to give up rather than risk feeling humiliated. There-
fore, a game design should give the player plenty of support during this period, perhaps
by guiding players using a training mode or making them invulnerable until they have
grasped the basic elements of the new challenge.

Stage Two: At this stage the player has found their feet and their skill is increasing at a
rapid rate. As the player becomes aware of their success, any feelings of frustration will
fade away and they’ll become happily engrossed in the challenge. This is the ideal state
for the player to be in, and it is the designer’s job to try and make it last for as long as
possible.

Stage Three: This stage represents the player’s mastery of the challenge. This doesn’t
mean they couldn’t improve any further, but a flat slope means playing for a long time to
make even a little more progress—for example, trying to knock another few seconds off
your best lap time after you’ve already come first in every race. If the goals stop challeng-
ing the player or it just seems like too much effort to improve, then it is only a matter of
time before players will get bored. A designer must try and make sure that this doesn’t
happen too early in the game. If players feel they have mastered all the available chal-
lenges before they reach the end of a game, there’s not much chance that they will bother
completing it.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES 157

6153CH08.qxd 3/21/06 9:52 AM Page 157

Difficulty Curves
The learning curve provides a good representation of how a player might come to grips with a
game like Evil Clutches, where the game’s challenges never change. However, games like this
have a limited lifespan because players soon get bored when they reach stage three. The aim
of good level design is to slowly introduce new challenges and features into the game at a rate
that keeps the player in stage two of the learning curve. Introducing new features and chal-
lenges also plays a key part in determining the difficulty of a game. Difficulty curves are
related to learning curves but represent how the game’s difficulty changes over time rather
than the player’s skill level. If you think of the player’s journey through the game as a bit like
climbing a mountain slope, then it should look something like the one shown in Figure 8-4.

Figure 8-4. The difficulty curve of a computer game is represented here as a mountain.

The mountain starts with a shallow slope, in order to support players during the hardest
stage of their own learning curves, but gradually increases as the game progresses. As the
player’s skill grows and they approach the top of their learning curve (see Figure 8-3), the
game introduces new, harder challenges to bring them back down the curve and keep them in
stage two. In this way, the player’s positive emotional state is maintained while the difficulty of
the game gradually rises as a result of the extra challenges. By the time the player reaches the
steepest section of the slope, they should be well prepared for the game’s greatest challenges.
At this stage, knowing that they have a lot more distance behind them than in front also helps
to drive players on to complete the game.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES158

6153CH08.qxd 3/21/06 9:52 AM Page 158

The slope of a game’s difficulty curve has a big effect on the playability of the game. If you
make it too steep at the start, then players give up, but if it gets too shallow at any point, players
will get bored. Unfortunately, the only way to guarantee that you’ve got the difficulty curve
right is to test and tweak your game with lots of different players. Once you’ve designed a few
games, you’ll begin to develop your own ideas and strategies for doing this, but here’s one sug-
gested approach that may help you find your way:

1. Decide how many levels you want in your game.

2. Divide this total into three equal groups for EASY, MEDIUM, and HARD levels.

3. Design each level and decide which group it belongs to:

• All players should be able to complete EASY levels. Design these for players who
have never played a game of the same genre before.

• Most players should be able to complete MEDIUM levels. Design these for casual
game-players of this genre.

• Good players should be able to complete HARD levels. Design these for yourself
and your friends who play these kinds of games.

4. If you end up with too many levels in one group, then redesign some of them to make
them harder or easier for another group.

5. Play all of the levels again yourself and arrange them in order of difficulty.

6. Test your levels on different players:

• Friends or family members who dislike games of this genre should be able to com-
plete the EASY levels without help (although bribery may be required!)

• As the game’s designer, you should be able to complete all of the MEDIUM levels
without ever having to restart a level.

• Your friends who like games of this genre should eventually be able to complete all
of the HARD levels without any help from you.

7. Tweak or reorder your levels according to the outcome of your tests.

Probably the most important tip here is that a game should only start to challenge its
designer about two thirds of the way through the game (where the red flag is on the moun-
tain). We’ve said it before, but the easiest trap for a designer to fall into is to make your games
too hard because you find your own game so easy. And remember—even your final level
shouldn’t be so hard that you can’t complete it yourself!

■Note It’s easy to get difficulty and learning curves confused, and people often do. If we want to suggest
that something is hard, we will sometimes say it has a “steep learning curve,” but as we have seen, a steep
learning curve is more likely to suggest that something is easy!

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES 159

6153CH08.qxd 3/21/06 9:52 AM Page 159

Saving the Day
Giving the player the opportunity to save their progress can also make a big difference to the
difficulty of a game. Players these days don’t expect to have to go right back to the start of a
game every time they fail to complete it, and may quickly lose interest if they do. Save points
are considered a natural part of playing longer games, but a designer needs to be wary of the
effect that saving can have on the way that a game is played. Providing the player with the
ability to save at any point is a gift that many players will not be able to resist abusing—even
when it begins to ruin their own playing experience! Saving the game every 30 seconds breaks
up the flow of a game and can make its challenges much easier than they were designed to be.
Even worse, a designer may be tempted to take it into account and create challenges that
require the player to save all the time in order to succeed. This is not a good path to go down
and is best avoided by creating automatic save points (such as at the end of each level) or
rationing their use, so that the player has to find some kind of token before they can save their
progress.

Applying It All
We’ve covered a lot of theory in this chapter, but we haven’t been applying it to our example
game as we went along. This had been a deliberately different approach to the first game
design chapter because we wanted to emphasize that level design involves planning. Design-
ing as you go along can be a good way to come up with your game’s core game mechanics, but
if you approach level and feature design in the same way, you’re unlikely to end up with a well-
structured game. However, now that we have the theory under our belt we can use this to
finish off Koalabr8 and turn it into a complete playable game. You’ll find a new version of the
game containing all the changes we make in this section in Games/Chapter08/new_koala.gm6
on the CD.

Features
The features we already have for Koalabr8 avoid all the undesirable issues we mentioned at
the start of this chapter. There are no equivalent features, one-trick ponies, or arms race issues
in any of these, so we already have eight good features to use in our levels. Furthermore, one
of the features (boulders) also has the potential for emergent behavior, because it’s designed
to encourage interactions between features (by allowing the player to destroy them!). This
already gives us the following features to structure our level designs around:

• Explosive TNT

• Moving circular saws

• Red exits—Allow any number of koalas to exit the level

• Blue exits—Allow a single koala to exit the level

• Blue locks/switches—Permanently open locked passageways

• Yellow locks/switches—Open locked passageways for a limited time

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES160

6153CH08.qxd 3/21/06 9:52 AM Page 160

• Red locks/switches—Open locked passageways only whilst pressed

• Boulders—Can be pushed by koalas and destroy other hazards

We’re going to create 18 game levels and two training levels in total, so we already have
enough features for a new one nearly every two levels. However, we think there’s room for just
one more feature, so we’ll try to create another that encourages emergence by creating more
potential for interactions between features.

Emerging Springs
Earlier in the chapter we mentioned that there were “good” and “bad” kinds of emergence.
Unfortunately, the structured nature of puzzle games means that emergence often ends up
being the bad kind. If the player discovers how to use a feature in a way the designer didn’t
expect, it’s often more likely to prevent the player from solving the puzzle than helping them
to complete it! There’s already a good example of this if the player uses a boulder to crush a
switch. This interaction has actually been used to create an interesting level, but you can
probably see how it could potentially cause problems in the wrong situation.

Fortunately, there is another kind of “good” emergence that can take place between a
programmer and level designer. This is where the level designer is able to utilize interactions
between features in ways that the programmer hadn’t expected. It happens as a result of the
same kinds of interactions between features that we discussed before, and can trigger a really
constructive evolution of ideas in a game’s design. It also has the advantage that any “emer-
gent bugs” that the designer finds can be fixed before the game is finished. With the right kind
of relationship between the programmer and level designer, this kind of emergence can have
a really positive effect on the gameplay. It’s well worth trying to recruit your friends as level
designers for this very reason!

We’re going to create springs as a new feature that has the potential to create emergence.
Springs will send koalas flying in a straight line at twice their normal speed until they hit a
solid object. Flying koalas are vulnerable to dangerous obstacles in the same way, but will
automatically operate switches and detonators along the way. Traveling at speed immediately
creates interplay between other objects that involve speed, like timed switches and circular
saws. Making switches operate as koalas fly over them creates more interplay, and we can
enhance this a bit by making it possible to turn blue switches back on again after they have been
turned off. Therefore, the following are the changes we’ve made to the features of the game:

• Add springs that turn koalas into flying koalas.

• Make flying koalas travel at double speed.

• Make blue switches alternately switch between on and off.

Training Missions
To help the player through the early stages of their learning curve at the start of the game,
we’re going to create two training levels. These levels will introduce the player to the main fea-
tures of the game (TNT, saws, and switches) with a bit of helpful prompting on the screen (see
Figure 8-5). However, the main challenge of this game is controlling more than one character

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES 161

6153CH08.qxd 3/21/06 9:52 AM Page 161

at once, so the training levels will give the player a chance to get used to this, too. They will
complete the training level first with just one koala, and then try the same level again with
two. In this way, we should be able to make sure that the difficulty curve isn’t so steep that it
puts players off before they have a chance to get into the game.

Figure 8-5. The new Koalabr8 training level contains helpful prompts.

Dividing Levels
Our finished game will have 20 levels, including the two training levels, so that’s six in each of
the easy, medium, and hard difficulty brackets (18 in total). To help us make sure that the easy
levels live up to their name, we’ll try to avoid using features that involve timing on these levels
(saws and yellow switches). Timing adds extra pressure for the player, so we’ll save these until
they’re a bit more comfortable with the game. Instead, the easy levels will attempt to teach the
player how to control more than one koala at once.

The medium levels will try to build on the player’s skills by making them control their
koalas under pressure. We’ll introduce saws and switches and provide situations in which the
whole team has to be moved in synchronization in order to avoid obstacles. The hard levels
will develop these skills even more and add cryptic elements to the puzzles that involve coun-
terintuitive or inventive interactions between the features.

To give the player a sense of progression, we’re also going to make the easy levels slightly
smaller than the medium levels and only use the whole screen for the hard levels. We’ll also
give the player a little extra breathing space when new features are introduced by putting
those features in situations where they can be explored without too much danger. So after a
lot of designing, testing, and tweaking we eventually came up with the 18 levels that you’ll find
in the latest version of the game (see Figure 8-6).

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES162

6153CH08.qxd 3/21/06 9:52 AM Page 162

Figure 8-6. A finished Koalabr8 level contains the new spring feature.

Summary
And that’s it! We hope you enjoy playing our new version of Koalabr8 and that it will inspire
you to have a go at creating more levels and features for the game. Perhaps you’ll even find
some emergent solutions to the levels that we hadn’t spotted! In this chapter you’ve learned
that there is more to level design that churning out the first ideas that come into your head.
We’ve looked at a number of principles that can help you to design better levels and followed
them through with the Koalabr8 example. The main issues for level and feature design were:

• Choose features by

• Brainstorming with your friends.

• Being wary of equivalent features.

• Avoiding starting an arms race.

• Avoiding one-trick ponies.

• Encouraging emergence through features that interact.

• Structure your level designs by

• Including training levels to support the player when they most need it.

• Carefully controlling the difficulty curve of your game.

• Tweaking your level designs based on how hard others find your game.

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES 163

6153CH08.qxd 3/21/06 9:52 AM Page 163

However, perhaps the most important thing to remember from this chapter is that
the player is your apprentice and a good game designer uses their level designs to teach the
player how to master their game. That concludes this chapter and the third part of the book.
In Part 4, we’ll be looking at multiplayer games, and what better way could there be to learn
about them than by shooting at your friends with a great big tank?

CHAPTER 8 ■ GAME DESIGN: LEVELS AND FEATURES164

6153CH08.qxd 3/21/06 9:52 AM Page 164

6153CH08.qxd 3/21/06 9:52 AM Page 165

6153CH09.qxd 3/23/06 10:59 AM Page 166

Multiplayer Games

Spread a little happiness by bringing a friend along for the ride. Then demonstrate your

complete superiority by kicking their butt.

P A R T 4

6153CH09.qxd 3/23/06 10:59 AM Page 167

6153CH09.qxd 3/23/06 10:59 AM Page 168

Cooperative Games:
Flying Planes

Up to now we’ve only created single-player games, but for the next two chapters we’ll be
creating games that are played with a friend. This chapter’s game will require players to coop-
erate in order to succeed, while the next will make players compete against one another for
ultimate supremacy. Cooperative multiplayer games challenge players to work together and
sometimes even make sacrifices for each other in order to succeed in their common goals.

In this chapter we’ll also use a number of new Game Maker features: we’ll take an in-
depth look at the use of variables and learn about using time lines.

Designing the Game: Wingman Sam
We’re calling this game Wingman Sam as it sets American and British fighter planes alongside
each other in World War II. Here is a description of the game:

At the end of World War II you and your wingman are part of an allied squadron with secret
orders to intercept the dangerous General von Strauss. Unfortunately, your mission turns out to
be less secret than you thought and you are soon engaged by wave after wave of enemy fighters.
You’ll need to work together to survive the onslaught and destroy the general’s plane, so the mis-
sion will be aborted if either of your planes is destroyed.

One player will control their plane with the arrow keys and fire bullets with the Enter/Return
key. The other player will control their plane with the A, S, D, and W keys, and will fire bullets
with the spacebar. Enemy planes will appear from the front, the sides, and behind. Some will
just try to ram you while others will shoot at you. Both of the player’s planes can only take a lim-
ited amount of damage before they are destroyed.

The game consists of just one level that takes place over an ocean scene. It will present you
with increasingly difficult waves of planes and end with a battle against the infamous general
himself. The game is won only if both players survive this final battle. See Figure 9-1 for a
screenshot.

169

C H A P T E R 9

6153CH09.qxd 3/23/06 10:59 AM Page 169

Figure 9-1. This is how the Wingman Sam game will look in action.

All resources for this game have already been created for you in the Resources/Chapter09
folder on the CD.

Variables and Properties
Before we begin creating the Wingman Sam game, let’s take a moment to consolidate our
understanding of variables in Game Maker. This simple concept can provide a very powerful
mechanism for creating more interesting gameplay. We’ve already used them in several games,
but what actually is a variable? Essentially, a variable is just a place for storing some kind of
information, such as a number or some text. Most variables you will use in Game Maker store
information about a numeric property of an instance. There are certain properties we can set
when we define an object, such as whether it is visible or solid. Other properties store infor-
mation that is different for each individual instance, such as its x- and y-position in the room.
There are also a number of global properties, like the score, that are not related to individual
instances. Each variable has its own unique name, which we can use to retrieve or change the
value of that variable in Game Maker. Here are some important variables that every instance
has—some of them should look familiar, as we have already used them before:

• x is the x-coordinate of the instance in the room.

• y is the y-coordinate of the instance in the room.

• hspeed is the horizontal speed of the instance (in pixels per step).

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES170

6153CH09.qxd 3/23/06 10:59 AM Page 170

• vspeed is the vertical speed of the instance (in pixels per step).

• direction is the instance’s current direction of motion in degrees (0–360 anticlockwise;
0 is horizontally to the right).

• speed is the instance’s current speed in the direction.

• visible determines whether the object is visible or invisible (1=visible, 0=invisible).

• solid determines whether the object is solid or not solid (1=solid, 0=not solid).

■Note Different variables employ different conventions for the meaning of the information that they store.
A common convention for variables that either have a property or don’t have a property is to use the values
0 and 1. So if an instance is visible then its visible property will be set to 1, whereas if it is invisible then
its visible property will be set to 0. This convention is so common that you can use the keyword true in
place of the value 1 and the keyword false in place of the value 0.

And here are some important global variables:

• score is the current value of the score.

• lives is the current number of lives.

• mouse_x is the x-position of the mouse.

• mouse_y is the y-position of the mouse.

• room_caption is the caption shown in the window title.

• room_width is the width of the room in pixels.

• room_height is the height of the room in pixels.

You can refer to an instance’s variables from within its own actions by entering the names
in their basic form shown here. Retrieving or changing an instance’s variables in this way will
only affect the instance concerned. To refer to variables in other instances, you need to use
an object name followed by a dot (period/full stop) and then the variable name, such as
object_specialmoon.x (the x-coordinate of the special moon object). When you use the name
of an object to retrieve a variable in this way, Game Maker will give you the value of the first
special moon instance’s variable—ignoring any other instances there might be in the game.
However, if you change the variable object_specialmoon.x, then it will change the x-coordinate
of all special moon instances in the game! Game Maker also includes some special object
names that you can use to refer to different instances in the game:

• self is an object that refers to the current instance. It is usually optional as self.x
means the same as just x.

• other is an object that refers to the other instance involved in a collision event.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 171

6153CH09.qxd 3/23/06 10:59 AM Page 171

• all is an object that refers to all instances, so setting all.visible to 0 would make all
instances of all objects invisible.

• global is an object used to refer to global variables that you create yourself.

■Note You should only use the global object to refer to global variables that you create yourself. You do not
use the global object to refer to built-in global variables, like score and lives. So global.score is not the
same as score and would refer to a different variable. Global variables are particularly useful when you
want to refer to the same variable in different instances or in different rooms, as they keep their values
between rooms.

There are many, many more global and local instance variables, all of which can be found
in the Game Maker documentation. There are actions to test the values of variables as well as
manipulating them directly. You can even define variables for your own purposes as well. For
example, the planes in Wingman Sam can only survive a certain amount of enemy fire, so each
needs its own property to record the amount of damage it has taken. We’ll create a new vari-
able for this property called damage. The plane’s Create event will set this variable to 0, and
we’ll increase it when the plane is hit. Once the damage is greater than 100, the plane will be
destroyed.

■Caution A variable’s name can only consist of letters and the underscore symbol. Variable name are
case-sensitive, so Damage and damage are treated as different variables. It is also important to make sure
that your variable names are different from the names of the resources; otherwise Game Maker will become
confused.

Two important actions that deal with variables directly are found in the control tab:
The Set Variable action changes the value of any variable, by specifying the Variable
name and its new Value. Setting a variable using a name that does not exist will create

a new variable with that name and value. Enabling the Relative option will add the value
you provide to the current value of the variable (a negative value will subtract). However, the
Relative option can only be used in this way if the variable already has a value assigned to it!
You can also type an expression into the Value. For example, to double the score you could
enter the Variable score and a Value of 2*score.

The Test Variable action tests the value of any variable against selected criteria and then
only executes the next action or block of actions if the test is true. The test criteria can

be whether a variable is equal to, smaller than, or larger than a given value.
Don’t worry if this seems like a lot of information to take in at once—we’ll make use of

many of these concepts creating the Wingman Sam game, so you’ll have a chance to see how
it all works in practice.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES172

6153CH09.qxd 3/23/06 10:59 AM Page 172

The Illusion of Motion
The style of game we are creating in this chapter is often referred to as a Scrolling Shooter. This
style takes its name from the way that the game world scrolls horizontally or vertically across
the screen as the game progresses. Although the player’s position on the screen remains fairly
static, the scrolling creates the illusion of continuous movement through a larger world.

Game Maker allows us to create scrolling backgrounds by using a tiling background image
that moves through the room.

Creating a room with a scrolling background:

1. Start up Game Maker and begin a new empty game.

2. Create a background resource called background using the file Background.bmp from the
Resources/Chapter09 folder on the CD.

3. Create a new room called room_first and give it an appropriate caption.

4. Switch to the backgrounds tab and select the new background from the menu icon,
halfway down on the left.

5. At the bottom of the tab set Vert Speed to 2 to make the background scroll slowly
downward.

Run the game, and you’ll see that the background continually scrolls downward. To
enhance the look and feel, we’re going to add a few islands in the ocean. An easy way to do this
would be to create a larger background image and add the island images to this background.
The disadvantage of this approach would be that the islands would appear in a regular pat-
tern, which would soon become obvious to the player. Consequently, we’ll choose a slightly
more complicated approach: using island objects that move down the screen at the same
speed as the background. When they fall off the bottom, they’ll jump to a random position
across the top of the screen again so that they look like a new island in a different position.

Creating looping island objects:

1. Create sprites called spr_island1, spr_island2, and spr_island3 using Island1.gif,
Island2.gif, and Island3.gif from the Resources/Chapter09 folder on the CD.

2. Create a new object called obj_island1 using the first island sprite. Set Depth to 10000
to make sure that it appears behind all other objects.

3. Add a Create event and include the Move Fixed action with a downward direction and
a Speed of 2. This will make it move at exactly the same speed as the background.

4. Add an Other, Outside room event and include a Test Variable action. Set Variable to
y, Value to room_height, and Operation to larger than. room_height is a global variable
that stores the height of the room in pixels. Therefore, this will test for when the island
has fallen off the bottom of the screen by checking whether the vertical position of the
island is larger than this value (see Figure 9-2).

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 173

6153CH09.qxd 3/23/06 10:59 AM Page 173

5. Add a Jump to Position action with X set to random(room_width) and Y set to -70. Using
the global variable room_width with the random() command will provide a random
number that does not exceed the width of the room. This will move the island to a
random horizontal position just above the top of the room where it is out of sight.

6. Create objects for the other two islands and set the first island to be their parent.

7. Add one instance of each of the island objects to room_first at different vertical posi-
tions in the room.

Figure 9-2. This action tests whether the island is below the visible edge of the room.

Now test the game. The scrolling sea should contain three islands, which reappear back at
the top of the screen after disappearing off the bottom. Because the island instances move at
exactly the same speed as the background, they appear as if they are part of it.

Flying Planes
Our scrolling background is complete, so it’s time to create the planes that the players will
control. These planes will have nearly the same behavior as each other, but there will need
to be a few differences, such as the controls. To avoid duplicated work, we’ll use the parent
mechanism and three different plane objects. obj_plane_parent will contain all the behavior
common to both planes, obj_plane1 will be player one’s plane, and obj_plane2 will be player
two’s plane. Both of these last two objects will have obj_plane_parent as their parent so that
they can inherit its behavior. Let’s create the basic structure for these objects.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES174

6153CH09.qxd 3/23/06 10:59 AM Page 174

Creating the plane objects:

1. Create sprites called spr_plane1 and spr_plane2 using Plane1.gif and Plane2.gif from
the Resources/Chapter09 folder on the CD. Set the Origin of both sprites to Center.
This is important for creating bullets and explosions later on.

2. Create a new object called obj_plane_parent. It doesn’t need a sprite, and we’ll come
back to create events and actions for it later.

3. Create another object called obj_plane1 and give it the first plane sprite. Set Depth
to -100 to make sure that it appears above other objects and set its Parent to be the
obj_plane_parent.

4. Create a similar object called obj_plane2 using the second plane sprite. Set Depth to
-99 to make sure that it appears above other objects (apart from the first plane). Also
set its Parent to be obj_plane_parent.

The players will be able to move their planes around most of the screen using their own
movement keys, but should be prevented from going outside of the visible area. When the
player isn’t pressing any keys, the plane will not move, but will still appear to be cruising along
because of the scrolling background. We’ll control the position of the planes manually (rather
than setting their speed) so that we can easily prevent them from leaving the boundaries of
the room.

Adding movement keyboard events to player one’s plane object:

1. Reopen the properties form for obj_plane1 by double-clicking on it in the resource list.

2. Add a Keyboard, <Left> event and include the Test Variable action. Set Variable to x,
Value to 40, and Operation to larger than. Include a Jump to Position action. Set X to
-4 and Y to 0, and enable the Relative option. This will now only move the plane to the
left if its x-position is greater than 40, which means it must be well inside the left
boundary of the screen.

3. Add a Keyboard, <Right> event and include the Test Variable action. Set Variable to x,
Value to room_width-40, and Operation to smaller than. Include a Jump to Position
action. Set X to 4 and Y to 0, and enable the Relative option. This will only move the
plane right if its x-position is well inside the right boundary of the screen.

4. Add a Keyboard, <Up> event key and include the Test Variable action. Set Variable to
y, Value to 40, and Operation to larger than. Include a Jump to Position action. Set X
to 0 and Y to -2, and enable the Relative option. This will only move the plane up if its
y-position is well inside the upper boundary of the screen.

5. Add a Keyboard, <Down> event and include the Test Variable action. Set Variable to y,
Value to room_height-120, and Operation to smaller than. Include a Jump to Position
action. Set X to 0 and Y to 2, and enable the Relative option. This will only move the
plane down if its y-position is well inside the lower boundary of the screen.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 175

6153CH09.qxd 3/23/06 10:59 AM Page 175

Note that we only move the planes 2 pixels vertically in each step. Any more than this
would make them move faster than the background, and it would look like the planes were
flying backward! Also note that we have left a large area at the bottom of the screen where the
planes cannot fly. We’ll use this space later for displaying a status panel, but first we need to
add similar events and actions to control the second plane.

Adding movement keyboard events to player two’s plane object:

1. Reopen the properties form for obj_plane2 by double-clicking on it in the resource list.

2. Add similar events with the same actions as before but this time using the A key for
left, the D key for right, the W key for up, and the S key for down.

Your planes are now ready to fly! Place one instance of each of the planes in room_first
and run the game. You should have control of both planes, within the bounds of the room,
and get the illusion of passing over the sea beneath you. In case your game isn’t working,
you’ll find a version of the game so far in the file Games/Chapter09/plane1.gm6 on the CD.

Enemies and Weapons
Well, there seems to be plenty of scrolling going on in our scrolling shooter, but not a lot of
shooting yet! Let’s rectify this by adding events and actions to make the planes fire bullets and
create some enemies for them to shoot at while we’re at it. We’ll start by creating the bullet
object.

Creating the bullet object:

1. Create a new sprite called spr_bullet using Bullet.gif from the Resources/Chapter09
folder on the CD. Set the sprite’s Origin to the Center of the sprite.

2. Create a new object called obj_bullet and give it the bullet sprite.

3. Add a Create event and include the Move Fixed action. Select the up arrow and set the
Speed to 8.

4. Add the Other, Outside room event and include the Destroy Instance action.

Deciding when to create a bullet instance is a little more complicated. In this game we
want it to be possible for the player to keep the fire key pressed and create a continuous
stream of bullets. Nonetheless, creating a new bullet every step would create way too many
bullets (30 every second!). To limit the rate at which bullets appear we’ll create a new variable
called can_shoot. We’ll only allow the player to shoot when can_shoot has a value larger than 0,
and once a shot has been made we’ll set can_shoot to -15. We’ll then increase the value of
can_shoot by 1 in each step so that it will be 15 steps (half a second), before the player can
shoot again. As this behavior needs to be largely the same for both planes, we’ll put most of it
in the parent plane object.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES176

6153CH09.qxd 3/23/06 10:59 AM Page 176

Adding shooting keyboard events to the plane objects:

1. Reopen the properties form for obj_plane_parent by double-clicking on it in the
resource list.

2. Add a Create event and include the Set Variable action (control tab). Set Variable to
can_shoot and Value to 1. Using Set Variable for the first time with a new variable
name creates that new variable. Subsequent Set Variable actions may then use the
Relative option to add and subtract from it.

3. Add a Step, Step event and include the Set Variable action with Variable set to
can_shoot, Value set to 1, and the Relative option enabled.

4. Now reopen the properties form for obj_plane1. Add a Keyboard, <Enter> event and
include the Test Variable action. Set Variable to can_shoot, Value to 0, and Operation
to larger than. Include the Start Block action to make all the following actions depend
on this condition.

5. Include the Create Instance action and select the bullet object. Set X to 0 and Y to –16,
and enable the Relative option to create the bullet relative to the plane’s position.
Include the Set Variable action, with Variable set to can_shoot and Value set to -15.

6. Finally, include the End Block action. The event should look like Figure 9-3.

7. Repeat steps 4–6 for obj_plane2, this time using the Keyboard, <Space> event for the
fire key.

Figure 9-3. These are the actions required for shooting a bullet.

To make the gameplay a bit more interesting, we’ll also allow the player to shoot bullets
more quickly if they repeatedly press the fire button. So when the player releases the fire
button, we’ll add 5 to the can_shoot variable.

Adding key release events to the plane objects:

1. Reopen the properties form for obj_plane1. Add a Key Release, <Enter> event and
include the Set Variable action. Set Variable to can_shoot and Value to 5, and enable
the Relative option.

2. Reopen the properties form for obj_plane2. Add a Key Release, <Space> event and
include the Set Variable action. Set Variable to can_shoot and Value to 5, and enable
the Relative option.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 177

6153CH09.qxd 3/23/06 10:59 AM Page 177

It might be wise to run the game now and make sure that this all works correctly before
proceeding. Carefully check through your steps if there is a problem.

Now it’s time to create our first enemy. This will be a small plane that simply flies down
the screen and ends the game if it collides with one of the players (we’ll add health bars later).
The player’s bullets will destroy the enemy and increase the player’s score.

Creating an enemy plane object along with its sprites and explosions:

1. Create sprites called spr_enemy_basic, spr_explosion1, and spr_explosion2 using
Enemy_basic.gif, Explosion1.gif, and Explosion2.gif from the Resources/Chapter09
folder on the CD. Set the Origin of all the sprites to the Center.

2. Create sounds called snd_explosion1 and snd_explosion2 using the files Explosion1.wav
and Explosion2.wav from the Resources/Chapter09 folder on the CD.

3. Create an object called obj_explosion1 and give it the first explosion sprite. Add a
Create event and include the Play Sound action to play the first explosion sound.

4. Add the Other, Animation end event and include the Destroy Instance action.

5. Create an object called obj_explosion2 and give it the second explosion sprite. Add a
Create event and include a Play Sound action to play the second explosion sound.

6. Add an Other, Animation end event and include the Sleep action. Set Milliseconds to
1000 and set Redraw to false. Include the Restart Game action directly afterward.

7. Create an object called obj_enemy_basic and give it the basic enemy sprite. Add a
Create event and include the Move Fixed action with a downward direction and a
Speed of 4.

8. Add an Other, Outside room event and include the Test Variable action. Use it to test
whether y is larger than room_height and include a Destroy Instance action after it.
This will destroy the enemy plane when it reaches the bottom of the room.

9. Add a Collision event with the bullet object and include a Set Score action with a
Value of 10 and the Relative option enabled. Include a Destroy Instance action to
make the enemy object destroy itself.

10. Now include the Create Instance action. Set Object to obj_explosion1 and enable the
Relative option so that it is created at the enemy’s position. Finally for this event, add a
Destroy Instance action to destroy the bullet (the Other object in this collision).

11. Add a Collision event with the parent plane object and include a Destroy Instance
action to make the enemy object destroy itself. Include a Create Instance action with
Object set to obj_explosion1 and the Relative option enabled.

12. Include a Destroy Instance action to destroy the player’s plane object (the Other
object). Finally, include a Create Instance action with Object set to obj_explosion2
and the Relative option enabled. Also select Other for Applies to so that the explosion
is created at the position of the player’s plane—not the enemy’s.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES178

6153CH09.qxd 3/23/06 10:59 AM Page 178

This gives us a working enemy plane object, but we still need a mechanism to create
enemy planes in the first place. To begin with, we’ll do this in a controller object and randomly
generate enemy planes about every 20 steps.

Creating a controller object:

1. Create a new object called obj_controller. It doesn’t need a sprite.

2. Add a Step, Step event and include a Test Chance action with Sides set to 20. Follow
this with a Create Instance action, with Object set to obj_enemy_basic. Set X to
random(room_width) and Y to -40. This will create an enemy plane instance at a
random position just above the top of the room.

3. Add one instance of this controller object to the room.

This gives us the first playable version of our game. Recruit a willing volunteer to play
with and check that everything is working okay so far. You can also find this version in the file
Games/Chapter09/plane2.gm6 on the CD.

■Note You can easily change this into a single-player game by removing the second plane from the room.

Dealing with Damage
The current version of the game ends as soon as one of the player’s planes is hit by the enemy.
We saw from the versions of Evil Clutches in Chapter 5 that this works better if we use a health
bar that can absorb several hits instead. If you were curious enough to look and see how this
was done, then you will have noticed that Game Maker provides simple actions to control and
display the player’s health. However, these actions only work for recording and displaying the
health of one player, and in Wingman Sam we have two. Consequently, we’ll create a new vari-
able called damage for each player, and use this to record and display the status of their health
independently. As the name suggests, each plane’s damage will be set to 0 at the start of the
game and increase slightly for each collision with enemy planes or bullets. If a plane’s health
gets larger than 100, then it explodes and the game is over. We’ll update the damage variable in
the parent plane object, because it will work the same for both players.

Adding a damage variable to the parent plane object:

1. Reopen the properties form for obj_plane_parent and select the Create event. Include
a Set Variable action, setting Variable to damage and Value to 0.

2. Select the Step event and include a Test Variable action. Set Variable to damage, Value
to 100, and Operation to larger than. Follow this with a Start Block action to begin a
block of events.

3. Next include a Destroy Instance action to destroy the player’s plane. Also include a
Create Instance action that creates an instance of obj_explosion2 Relative to the
position of the plane.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 179

6153CH09.qxd 3/23/06 10:59 AM Page 179

4. Finally, include an End Block action.

5. Reopen the properties form for obj_enemy_basic and select the Collision event with
obj_plane_parent. Remove the last two actions that deal with destroying the plane and
creating the second explosion.

6. Include a Set Variable action with Variable set to damage, Value set to 10, and the
Relative option enabled. Also select the Other object from Applies to so that it
increases the player’s damage variable (rather than the enemy’s, which doesn’t exist!).

If you try running the game now, each plane should take about 10 hits before it explodes
and the game ends (it actually takes 11—can you think why?). Nonetheless, this is a little hard
to keep track of in your head, so clearly we need to display each player’s current damage for
them to see. To this end we’re going to add a panel at the bottom of the screen and draw over
the top of it. The controller object will be responsible for showing the panel, which will look
something like Figure 9-4. We’ll use a number of Game Maker’s drawing actions to draw the
panel, damage bars, and the score over the top.

Figure 9-4. The information panel will display the damage of each plane and the combined
score.

Creating the panel sprite and object:

1. Create a sprite called spr_panel using Panel.gif from the Resources/Chapter09 folder
on the CD.

2. Create a font resource called fnt_panel for displaying the panel text (just like you
would any other resource). Set Font to Arial and Size to 14, and enable the Bold
option, or choose a completely different font if you prefer.

3. Reopen the properties form for the controller object and set its Depth to -100. This will
make the panel appear in front of enemy planes.

4. Add a Draw event and include the Draw Sprite action (draw tab). Set Sprite to
spr_panel, X to 0, and Y to 404. This will draw the panel at the bottom of the screen.

5. Include the Set Font action and set Font to fnt_panel. Actions that draw text will now
use this font.

6. Include a Set Color action and choose a green color, as this is the color of the first
player’s plane. Actions that draw graphics or text will now do so in this color.

7. Include a Draw Text action, setting Text to Damage 1:, X to 20, and Y to 420.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES180

6153CH09.qxd 3/23/06 10:59 AM Page 180

8. Include a Draw Rectangle action. X1 and Y1 refer to the top-left corner of the rectangle
and X2 and Y2 refer to the bottom-right corner. Working down the form in order, set
these to 130, 420, 230, and 440. Also set Filled to outline. This will draw a green box
around the edge of the damage bar for player one.

9. Before we use each plane object’s damage variable, we need to check that it hasn’t
already died and been deleted; this would mean Game Maker couldn’t access the vari-
able and would produce an error. Include a Test Instance Count action. Set Object to
obj_plane1, Number to 0, and Operation to larger than. The next action will now only
be executed if the first plane exists.

10. Include a Draw Rectangle action. Set X1 to 130, Y1 to 420, X2 to 130+obj_plane1.damage,
and Y2 to 440, and set Filled to filled. This will draw a filled rectangle with a length
equal to the damage variable of obj_plane1.

11. Now we’ll do the same for the second plane. Include the Set Color action and choose
a reddish color. Include a Draw Text action, setting Text to Damage 2:, X to 20, and Y
to 445.

12. Include the Draw Rectangle action. Set X1, Y1, X2, and Y2 to 130, 445, 230 and 465,
respectively, and set Filled to outline.

13. Include the Test Instance Count action, setting Object to obj_plane2, Number to 0,
and Operation to larger than. Follow this with a Draw Rectangle action, setting X1 to
130, Y2 to 445, X2 to 130+obj_plane2.damage, and Y2 to 465. Also set Filled to filled.

We’ll also use the panel, rather than the window caption, to display the player’s score, and
get the controller object to show a high-score table when the game is over.

Displaying the score and high-score table:

1. Add a new background called background_score using the file Score.bmp from the
Resources/Chapter09 folder on the CD.

2. Reopen the properties form for the controller object and select the Draw event.

3. Include a Set Color action at the end of the list of actions and select a bluish color.
Include a Draw Score action (score tab), setting X to 350 and Y to 430.

4. Add a Create event and include the Score Caption action (score tab). Change Show
Score to don’t show to stop Game Maker from displaying the score in the window
caption.

5. Reopen the properties form for obj_explosion2 and select the Animation end event.

6. Include the Show Highscore action between the Sleep and Restart Game actions. Set
Background to background_score, set Other Color to yellow, and choose a nice font.

Now test the game to check that the damage and score are shown correctly on the new
panel. This version can also be found in the file Games/Chapter09/plane3.gm6 on the CD.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 181

6153CH09.qxd 3/23/06 10:59 AM Page 181

Time Lines
So far all the enemy planes have been generated randomly, but this doesn’t tend to create
interesting gameplay. Therefore, we will use Game Maker’s time line resource to create waves
of enemy formations that start off easy and gradually grow more difficult through the level. A
time line allows actions to be executed at preset points in time, so we can use them here to
determine when enemy planes are created.

We’ll begin with a very simple example of a time line. We’ll need to create a new time line
resource and indicate when we want actions to be performed. This should feel familiar as a
time line resource has a list of Moments and their Actions similar to an object resource’s list of
Events and their Actions (see Figure 9-5). Then we’ll need to set the time line running by using
the Set Time Line action.

Creating a new time line resource and starting it running:

1. From the Resources menu choose Create Time Line. A properties form will appear like
the one shown in Figure 9-5. The buttons on the left allow moments to be added and
removed from the Moments list in the middle of the form. Each moment can have its
own list of actions, which can be added in the usual way from the tabbed pages of
action icons on the right. Call the new time line time_level1.

Figure 9-5. A time line has a list of moments and actions.

2. Click the Add button to add a new moment. Type 60 in the prompt that appears and
click OK. Moments are measured in steps, so this creates a moment that happens after
2 seconds and adds it to the Moments list.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES182

6153CH09.qxd 3/23/06 10:59 AM Page 182

3. Include the Create Instance action (main1 tab) in the Actions list for this moment. Set
Object to obj_enemy_basic, X to 80, and Y to -40. This is the first of many new instances
we will create in the time line, so from now on we will refer to their X and Y positions
using the shorthand form: (X, Y), which would be (80, -40) in this case.

4. Add similar actions in the same moment to create enemy planes at the following posi-
tions: (200, -40), (320, -40), (440, -40), and (560, -40). This will create a horizontal row of
five planes at the top of the screen, two seconds into the level.

5. Reopen the properties form for the controller object and select the Create event.
Include a Set Time Line action from the main2 tab and set Time Line to the one we
just created. Leave Position set to 0 so that the time line starts at the beginning. The
action should now look like Figure 9-6.

6. Select the Step event and remove the two actions, as we no longer want to generate
random enemies.

■Note Each instance in the game can only have one time line set on it at a time. Setting a new time line
replaces the old one and setting a time line to no time line stops the execution of the current time line.

Figure 9-6. The Set Time Line action is used to start a time line.

Now run the game, and you should find that a row of enemy planes appears after about
two seconds. These are the only enemies that ever appear, so clearly we need to add a lot more
moments to the time line to make an interesting level! By giving planes different movement
directions, we can also make formations that fly horizontally or diagonally. But before we can
do that we’ll have to create some more types of enemy planes.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 183

6153CH09.qxd 3/23/06 10:59 AM Page 183

More Enemies
In this section we’ll create several types of enemy planes with varying behaviors. First, we’ll
create enemy planes that come from the left, right, and bottom of the screen. These are harder
to avoid and more difficult to shoot.

Creating new enemy plane objects:

1. Create sprites for the new enemies using Enemy_right.gif, Enemy_left.gif, and
Enemy_up.gif from the Resources/Chapter09 folder on the CD. Set the Origin of each
sprite to the Center.

2. Right-click on obj_enemy_basic in the resource list and select Duplicate. Call the dupli-
cate object obj_enemy_right and give it the right-facing enemy sprite.

3. Select the Create event for the new object and double-click on the Move Fixed action
in the Actions list. Select the right movement arrow instead of the down arrow and
close the action properties again. Select the Outside room event and double-click
on the Test Variable action in the Actions list. Change Variable to x and Value to
room_width, to test for when the plane is off the right edge of the screen.

4. Repeat steps 2 and 3 to create obj_enemy_left, which moves left and tests for x being
smaller than 0.

5. Repeat steps 2 and 3 to create obj_enemy_up, which moves up and tests for y being
smaller than 0.

Add some new moments and actions to the time line to test these new enemy planes. Leave
an appropriate pause between waves so that the step for each moment is between 100 and
200 steps more than the last. You’ll need to create instances of obj_enemy_right just to the left
of the room (X less than 0 and Y between 0 and 360), obj_enemy_left just to the right of the
room (X greater than 640 and Y between 0 and 360) and obj_enemy_up just below the room
(X between 0 and 640 and Y greater than 360). As you will see, this last type of plane is particu-
larly nasty and difficult to avoid.

The two other enemy planes that we’re going to create will shoot bullets. One will shoot
bullets in a straight line, while the other will direct bullets toward the player’s planes. We’ll
start by creating three types of bullets: one that moves downward and two others that move
toward each of the player’s planes.

Creating new enemy bullet objects:

1. Create a new sprite called spr_enemy_bullet using Enemy_bullet.gif and set the Origin
to the Center. Create an object called obj_enemy_bullet and give it the enemy bullet
sprite.

2. Add an Other, Outside room event and include a Destroy Instance action to destroy
the bullet.

3. Add a Collision event with the parent plane object and include a Destroy Instance
action followed by a Play Sound action to play snd_explosion1.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES184

6153CH09.qxd 3/23/06 10:59 AM Page 184

4. Include a Set Variable action and select Other for Applies to (the plane object). Set
Variable to damage and Value to 5, and enable the Relative option.

5. Create an object called obj_enemy_aim1 and give it the same bullet sprite. Set the
Parent to obj_enemy_bullet. This bullet will move toward player one’s plane, so we
need to check that it exists as we did in the control panel.

6. Add a Create event and include the Test Instance Count action. Set Object to
obj_plane1, Number to 0, and Operation to larger than. Follow this with the Move
Towards action (move tab) so that it is only executed if player one’s plane exists. Set X
to obj_plane1.x, Y to obj_plane1.y, and Speed to 8 so that it targets player one’s plane.

7. Include an Else action followed by a Move Fixed action with a downward direction and
a Speed of 6. This will make the bullet move straight down if the player’s object doesn’t
exist.

8. Finally, duplicate the obj_enemy_aim1 object and call it obj_enemy_aim2. Select the
Create event and edit the Test Instance Count action to set Object to obj_plane2.
Click on the Move Towards action and change the references to obj_plane1.x and
obj_plane1.y to obj_plane2.x and obj_plane2.y. This bullet will now target player
two’s plane instead.

The aiming bullets check to see if their target exists and start moving toward that plane’s
current position if they do. If it doesn’t exist, then they start moving straight downward. Now
we need to create the enemies that will shoot these bullets. Note that we haven’t yet given the
normal enemy bullet a direction and speed because we’re going to do this when we create
instances of it.

Creating enemy plane objects that shoot:

1. Create sprites called spr_enemy_shoot and spr_enemy_target using the sprites
Enemy_shoot.gif and Enemy_target.gif. Set the Origin of both sprites to the Center.

2. Create a new object called obj_enemy_shoot and give it the shooting enemy sprite. Set
Parent to obj_enemy_basic as its behavior is almost the same.

3. Add a Step, Step event and include a Test Chance action with 40 Sides. Include a
Create Moving action with Object set to obj_enemy_bullet, X set to 0, and Y set to 16.
Enable the Relative option, and set Speed to 6 and Direction to 270 (downward).

4. Create an object called obj_enemy_target and give it the correct sprite and
obj_enemy_basic as its Parent.

5. Add a Step, Step event and include a Test Chance action with 100 Sides. Include a
Create Instance action with Object set to obj_enemy_aim1, X set to 0, Y set to 16, and
the Relative option enabled.

6. Repeat step 5 to include an equal chance of creating instances of obj_enemy_aim2 in the
same way.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 185

6153CH09.qxd 3/23/06 10:59 AM Page 185

Add some additional moments to the time line in order to test the new enemy types. Note
that you can duplicate moments. This makes it easier to repeat the same formation many
times. A version of the game containing all the enemies and a simple time line to test them
can also be found in the file Games/Chapter09/plane4.gm6 on the CD.

End Boss
Games of this type usually finish with some kind of end of level boss. This boss is often an
extra strong enemy with its own damage counter and additional weapons. Our game only has
one level, so defeating the boss is also the ultimate goal of the game. Our boss will be General
von Strauss’s plane—a large plane flying in the same direction as the players as they slowly
catch up to it. It will let loose a barrage of bullets in different directions and must be hit 50
times to be destroyed. If the players survive this onslaught, then the general’s plane will
explode in a satisfying way and the game will end.

Creating the boss plane object:

1. Create a new sprite called spr_boss using Boss1.gif and set the Origin to the Center.

2. Create a new object called obj_boss and give it the boss sprite. Set its Depth to -10 so
that it appears above other planes and bullets.

3. Add a Create event and include a Move Fixed action with a downward direction and a
Speed of 1. Also include a Set Alarm action to set Alarm 0 to 200 steps.

4. Add an Alarm, Alarm 0 event and include the Move Fixed action with the middle
square selected and a Speed of 0 (to make the boss stop moving).

5. Reopen the time line and add another moment at the end of the list. Include a Create
Instance event to create obj_boss at (320, -80).

Quickly run the game and check that the boss plane moves into sight and stops in the
middle of the screen. Next we’ll include a hit counter that indicates how many times the boss
has been hit. We’ll use a variable called hits to record the number of hits and destroy the boss
when this reaches 50.

Adding a hit counter to the boss object:

1. Select the Create event for the boss object and include a Set Variable action. Set
Variable to hits and Value to 0.

2. Add a Collision event with the obj_bullet and include a Set Score action with a Value
of 2 and the Relative option enabled.

3. Add a Create Instance action and select the Other object from Applies to (the bullet).
Set Object to obj_explosion1 and enable the Relative option. Next include a Destroy
Instance action and select the Other object from Applies to (the bullet).

4. Include a Set Variable action. Set Variable to hits and Value to 1, and enable the
Relative option.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES186

6153CH09.qxd 3/23/06 10:59 AM Page 186

5. Include a Test Variable action. Set Variable to hits, Value to 50, and Operation to
equal to. Include a Start Block action so that the next block of actions will be only
executed once the boss has taken 50 hits.

6. Include a Destroy Instance action to destroy the boss object. Include a Set Score
action with a Value of 400 and the Relative option enabled (to reward the players).

7. Next include five Create Instance actions to create instances of obj_explosion2, at the
following Relative positions: (-30, 0), (30, 0), (0, 0), (0, -30), and (0, 10).

8. Finally, include an End Block action.

While this does the job, the player has no way of knowing how many shots they have
landed on the boss plane, or how close it is to destruction. Adding a bar to show this will help
to make the player’s goal and progress toward it much clearer.

Adding a bar to display the boss’s hit counter:

1. Add a Draw event to the boss object and include a Draw Sprite action. Remember that
object’s sprite stops being drawn automatically if we add a Draw event, so we need to
do this for ourselves. Set Sprite to spr_boss and Subimage to -1 (which means keep
the current subimage), and enable the Relative option.

2. Include a Set Color action and choose a dark red color. We will use this color to draw
a bar that decreases in length by 4 pixels for each hit that the boss object takes. As it
takes 50 hits to destroy it, we will need the bar to be 200 pixels wide to start with
(50 * 4 = 200). This can be achieved by including a Draw Rectangle action with X1
set to 10, Y1 set to 5, X2 set to 210-(4*hits), and Y2 set to 15.

Now it’s time to make the boss fight back. Colliding with the boss should instantly kill
players, and the boss itself should fire bullets in all directions. After a while we’ll even make
it send smaller ships out to target the player—just to make things interesting!

Making the boss object more challenging:

1. Add a Collision event with the parent plane object and include a Set Variable action.
Set Variable to damage and Value to 101, and select the Other object from Applies to.
This will immediately destroy the plane and end the game.

2. Select the Create event and include a Set Alarm action for Alarm 1 with 100 steps.

3. Add an Alarm, Alarm 1 event and include the Repeat action (control tab). This will
repeat the next action (or block of actions) a specified number of times. Set Times to
10 to repeat the next action 10 times.

4. Include the Create Moving action and set Object to obj_enemy_bullet. Set Speed to 6
and Direction to random(360), and enable the Relative option.

5. Finally, include a Set Alarm action for Alarm 1 with 30 steps. This makes the boss fire
again in 1 second’s time.

6. Select the Create event and include a Set Alarm action for Alarm 2 with 250 steps.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 187

6153CH09.qxd 3/23/06 10:59 AM Page 187

7. Add an Alarm, Alarm 2 event and include a Create Instance action. Create an instance
of obj_enemy_target just below the boss’s left wing by providing a Relative position of
(-40, -10). Include another Create Instance action to create a second instance of
obj_enemy_target just below the boss’s right wing using a Relative position of (40, -10).

8. Finally, include a Set Alarm action for Alarm 2 with 40 steps.

And that concludes the boss object! You should now be able to create a varied and inter-
esting time line with many different waves of enemy planes. These should gradually get more
and more challenging before the boss plane eventually appears on the scene for the final
battle. If you want to play our version, then you’ll find it on the CD in the file Games/Chapter09/
plane5.gm6.

Finishing Touches
All that remains is to add the final bells and whistles that turn this into a finished game. First,
let’s add some background music played by the controller object.

Playing background music in the controller object:

1. Create a new sound resource called snd_music using Music.mp3 from the Resources/
Chapter09 folder on the CD.

2. Reopen the controller object and select the Create event. Include a Play Sound action,
with Sound set to snd_music and Loop set to true.

Now we’re going to change some of the global game settings. You might have noticed that
all games created so far use the standard Game Maker loading image and the same red ball
icon when you create an executable. However, both of these can be changed very easily to cre-
ate a more individual feel for your game. We can also make the game automatically start in
full-screen mode and disable the cursor in the game.

Editing the global game settings to change the loading image and game icon:

1. Double-click on Global Game Settings at the bottom of the resource list and select the
loading tab.

2. Enable the Show your own image while loading option and click the Change Image
button. Select the Loading.gif from the Resources/Chapter09 folder on the CD.

3. Select the No loading progress bar option, as there is not much point in a loading bar
for a game that loads so quickly.

4. Click the Change Icon button and select Icon.ico from the Resources/Chapter09 folder
on the CD.

5. Select the graphics tab and enable the Start in full-screen mode option.

6. Disable the Display the cursor option.

7. Click the OK button to close the Global Game Settings.

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES188

6153CH09.qxd 3/23/06 10:59 AM Page 188

Test these changes by choosing Create Executable from the File menu. Save the exe-
cutable on your desktop and you’ll notice that it now has the plane icon. When you run the
game, you should also see the new loading image and the game should start in full-screen
mode.

There are many more useful options in the global game settings. You might want to take
a look at the different tabbed pages and consult the Game Maker documentation on them.
Before you finish, remember to add some help text (including the controls) in the Game
Information section.

Congratulations
We hope you’ve enjoyed creating a game that can be played with a friend. You’ll find the final
version on the CD in the file Games/Chapter09/plane6.gm6. It only has one level, so why not
add some more of your own? You could create several more levels just by using the enemy
planes we’ve already created, but obviously you can create new enemies too. You could
create planes that fly diagonally, shoot more bullets, go faster, and so forth. You could also
create some new end-of-level bosses as well. You might also want to add a title screen using
Title.bmp provided for you in the resources directory. Finally, you could add some bonus
objects that repair the damage of the plane or provide additional firing power.

Most of the graphics for this game come from Ari Feldman’s collection, which you’ll find
on the CD. There is one big image called all_as_strip.bmp that contains many different
images. In the File menu of the Sprite Editor, there is a command called Create from Strip,
which can be used to grab subimages out of the big image (search for “Strips” in the Game
Maker help for more details). The big image also contains a boat and a submarine that you
can use to create ground targets.

The main new concept that you learned in this chapter was the use of time lines. Time
lines are very useful for controlling the order of different events over the course of a game.
We used just one time line to control the flow of enemy planes, but you can use many
different time lines simultaneously (on different objects). For example, we could have used
a second time line to control the attacking behavior of the boss plane. You can even use
them to create little movies using Game Maker.

Wingman Sam is an example of a game in which two players must cooperate to achieve
a common goal. However, multiplayer games aren’t always this amicable, and in the next
chapter we’ll create a game in which two players must compete with each other by trying to
blow up each other’s tanks!

CHAPTER 9 ■ COOPERATIVE GAMES: FLYING PLANES 189

6153CH09.qxd 3/23/06 10:59 AM Page 189

6153CH09.qxd 3/23/06 10:59 AM Page 190

Competitive Games: Playing
Fair with Tanks

Combat arenas are a popular theme in multiplayer games, because they create extremely
compelling gameplay from very simple ingredients. This can often just be an environment
filled with weapons that the players can use to wipe each other out. The game that we’re going
to create in this chapter is exactly that, with futuristic battle tanks. Although games like this
are relatively easy to make, care must be taken in their design to ensure that both players feel
they are being treated fairly. We’ll discuss this more in Chapter 11.

This game will also introduce views in Game Maker to help create a larger combat arena.
We will also use views to create a split-screen mode, where each player can only see the part of
the arena around their own tank.

Designing the Game: Tank War
We’re calling this game Tank War for obvious reasons. Both players pilot a tank within a large
battle arena and the winner is the last one standing. Here’s a more detailed description of the
game:

Tank War is a futuristic tank combat game for two players. Each player drives his or her
own tank through the walled battle arena with the aim of obliterating the other’s tank. Once a
tank is destroyed, both tanks are respawned at their start position, and a point is awarded to the
surviving player. Most walls provide permanent cover, but some can be temporarily demolished
to create a way through. There is no ultimate goal to the game, and players simply play until one
player concedes defeat.

Each tank has a primary weapon that it can fire indefinitely. Pickups provide a limited
amount of ammunition for a secondary weapon, or repair some of the tank’s damage:

• Homing rockets: Always move in the direction of your opponent

• Bouncing bombs: Bounce against walls, and can be used to fire around corners

• Shields: Are activated to provide a temporary protective shield

• Toolbox: Repairs part of the tank’s damage

191

C H A P T E R 1 0

6153CH10.qxd 3/23/06 10:02 AM Page 191

The game uses a split-screen view divided in two parts (see Figure 10-1). The left part is
centered on player one’s tank and the right part is centered on player two’s tank. There is also
a mini-map at the bottom of the screen for locating pickups and the other player.

Player one will move their tank with the A, D, W, and S keys and fire with the spacebar
(primary) and Ctrl key (secondary). Player two will control their tank with the arrow keys, and
fire with the Enter key (primary) and Delete key (secondary).

Figure 10-1. Tank War has a split-screen with a little mini-map at the bottom.

All resources for this game have already been created for you in the Resources/Chapter10
folder on the CD.

Playing with Tanks
Our first task is to create the battle arena. This will be a simple environment with two types of
walls that will stop tanks and their shells. The first type of wall will be permanent, whereas the
second type can be demolished by tank fire but will reappear again after a while.

Creating the arena background and walls:

1. Launch Game Maker and start a new empty game.

2. Create a background resource called background using Background.bmp from the
Resources/Chapter10 folder on the CD.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS192

6153CH10.qxd 3/23/06 10:02 AM Page 192

3. Create two sprites called spr_wall1 and spr_wall2 using Wall1.gif and Wall2.gif.
Disable the Transparent property for both sprites.

4. Create a new object called obj_wall1 and give it the first wall sprite. Enable the Solid
property and close the object properties. No further behavior is needed.

5. Create a new object called obj_wall2 and give it the second wall sprite. Enable the
Solid property and set Parent to obj_wall1.

Like most of the previous games, this game will have a controller object. For the time
being, this will only play the background music but later it will also be responsible for display-
ing the score.

Creating the controller object and the room:

1. Create a sound resource called snd_music using Music.mp3 from the
Resources/Chapter10 folder on the CD.

2. Create a new object called obj_controller, with no sprite. Set Depth to -100 to make
sure that the drawing actions we will give it later on are drawn in front of other objects.
Add an Other, Game Start event and include the Play Sound action. Set Sound to
snd_music and set Loop to true.

3. Create a new room and switch to the settings tab. Call the room room_main and give it
an appropriate caption.

4. Switch to the backgrounds tab and select the background you created earlier.

5. Switch to the objects tab. In the toolbar, set Snap X and Snap Y to 32, as this is the size
of the wall objects.

6. Create a continuous wall of obj_wall1 objects around the edge of the room. Also add
walls of both types to the interior so that they create obstacles for the tanks (remember
that you can hold the Shift key to add multiple instances of an object).

7. Add one instance of the controller object into the room.

Now we’ll create our tanks. We’ll need different tank objects for each of the two players,
but most of their behavior will be identical so we’ll create a parent tank object that contains
all the common events and actions. In this game we’re going to control the tank instances by
directly changing their local direction and speed variables. Remember that the direction
variable indicates the direction of movement in degrees (0–360 anticlockwise; 0 is horizontally
to the right). The speed variable indicates the speed of movement in this direction, so a nega-
tive value represents a backward movement.

Creating the parent tank object:

1. Create a new object called obj_tank_parent, with no sprite.

2. Add a Create event and include a Set Friction action with Friction set to 0.5. This will
cause the tanks to naturally slow down and come to rest when the player is not press-
ing the acceleration key.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 193

6153CH10.qxd 3/23/06 10:02 AM Page 193

3. Add a Collision event with obj_wall1 and include a Set Variable action. Set Variable to
speed and Value to -speed. This will reverse the tank’s movement direction when it col-
lides with a wall.

4. Likewise, add a Collision event with obj_tank_parent and include a Set Variable
action. Set Variable to speed and Value to -speed (you could also right-click on the
previous collision event and select Duplicate Event to achieve this).

Creating the two players’ tank objects:

1. Create two sprites called spr_tank1 and spr_tank2 using Tank1.gif and Tank2.gif. Set
the Origin of both sprites to Center. Note that these sprites have 60 subimages corre-
sponding to different facing directions for the tanks.

2. Create a new object called obj_tank1 and give it the first tank sprite. Set Parent to
obj_tank_parent and enable the Solid option. Set Depth to -5 to make sure it appears
in front of other objects, such as shells, later on.

3. Add a Keyboard, Letters, A event and include a Set Variable action. Set Variable to
direction and Value to 6, and enable the Relative option. This will rotate the tank
anticlockwise.

4. Add a Keyboard, Letters, D event and include a Set Variable action. Set Variable to
direction and Value to -6, and enable the Relative option. This will rotate the tank
clockwise.

5. Add a Keyboard, Letters, W event and include a Test Variable action. Set Variable to
speed, Value to 8, and Operation to smaller than. Include a Set Variable action, setting
Variable to speed and Value to 1 and enabling the Relative option. This will then only
increase the speed if it is smaller than 8.

6. Add a Keyboard, Letters, S event and include a Test Variable action. Set Variable to
speed, Value to -8, and Operation to larger than. Include a Set Variable action, setting
Variable to speed and Value to -1 and enabling the Relative option. This will only
reduce the speed (reverse) if the speed is greater than -8 (full speed backward).

7. Add a Step, End Step event. In this event we must set the subimage of the sprite that
corresponds to the direction the tank is facing. Include the Change Sprite action, set-
ting Sprite to spr_tank1, Subimage to direction/6 and Speed to 0. As in Galactic Mail,
direction/6 converts the angle the object is facing (between 0 and 360) to the range of
images in the sprite (between 0 and 60).

8. We will draw the tank ourselves because later we want to draw more than just the
sprite. Add a Draw event. Include the Draw Sprite action, setting Sprite to spr_tank1
and Subimage to -1 and enabling the Relative option.

9. Repeat steps 2–8 (or duplicate obj_tank1 and edit it) to create obj_tank2. This time you
should use the arrow key events to control its movement (Keyboard, Left, etc.)

10. Reopen the room and put one instance of each tank into it.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS194

6153CH10.qxd 3/23/06 10:02 AM Page 194

Now test the game to make sure everything is working correctly. In case something is
wrong, you’ll find a version of the game so far in the file Games/Chapter10/tank1.gm6 on
the CD.

Firing Shells
Now the fun begins. In this section we’ll create shells for the tanks to shoot at each other, but
first we need a mechanism to record the tank’s damage and scores. As in Chapter 9, we’ll give
each tank a variable called damage to record the amount of damage it has taken. It will start
with a value of 0, and once it reaches 100 the tank is destroyed. We’ll also use two global vari-
ables called global.score1 and global.score2 to record how many kills each tank has made.
The controller object will initialize these variables and display their values.

Recording the player’s score in the controller object:

1. Create a font called fnt_score and select a font like Arial with a Size of 48 and the Bold
option enabled. We only need to use the numerical digits for the score, so you can click
the Digits button to leave out the other characters in the font. This will save storage
space and reduce the size of your .gm6 and executable game files.

2. Reopen the controller object and select the Game Start event. Include a Set Variable
action with Variable set to global.score1 and Value set to 0. Include another Set Vari-
able action with Variable set to global.score2 and Value also set to 0. This creates and
initializes the global score variables that will store the player’s score.

3. Add a Draw event and include a Set Font action. Set Font to fnt_score and Align to
right. Include a Set Color action and choose a dark red color.

4. Include a Draw Variable action from the control tab. Set Variable to global.score1, X
to 300, and Y to 10.

5. Include another Set Font action with Font set to fnt_score, but this time set Align to
left. Include a Set Color action and choose a dark blue color.

6. Include a Draw Variable action with Variable set to global.score2, X set to 340, and Y
set to 10.

If you run the game now, you should begin with a large 0–0 score displayed on the screen.
Next we’re going to create two explosions: a large one for when a tank is destroyed, and a small
one for when a shell hits something.

Creating the large explosion object:

1. Create a sprite called spr_explosion_large using Explosion_large.gif and Center the
Origin.

2. Create a sound called snd_explosion_large using Explosion_large.wav.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 195

6153CH10.qxd 3/23/06 10:02 AM Page 195

3. Create a new object called obj_explosion_large. Give it the large explosion sprite and
set Depth to -10. Add a Create event and include a Play Sound action, with Sound set
to snd_explosion_large and Loop set to false.

4. Add an Other, Animation End event and include the Restart Room action.

Creating the small explosion object:

1. Create a sprite called spr_explosion_small using Explosion_small.gif and Center the
Origin.

2. Create a sound called snd_explosion_small using the file Explosion_small.wav.

3. Create an object called obj_explosion_small. Give it the small explosion sprite and set
Depth to -10. Add a Create event and include the Play Sound action, with Sound set to
snd_explosion_small and Loop set to false.

4. Add the Other, Animation End event and include the Destroy Instance action.

Explosions in hand, we’re now ready to create the damage mechanism. The parent tank
object will be responsible for initializing the damage variable, checking the damage, and draw-
ing the tank’s health bar on the screen. It will also be responsible for blowing up the tank when
its damage reaches 100, which is why we needed the explosion objects first.

This is all pretty straightforward, and putting this code in the parent tank object will save
us some time. However, when the tank blows up we also need to increase the correct player’s
score—so how do we know which player’s tank has died if we are working with the parent
object? Fortunately, every instance has a variable called object_index that records a number
corresponding to the type of object it is. Every object has its own unique number, which can
be accessed by using the object name as if it was a variable (in this case obj_tank1 and
obj_tank2). So by comparing object_index and obj_tank1 we can tell if the instance is an
instance of player one’s tank or an instance of player two’s.

We’ll check the tank’s damage in the Step event of the parent tank object and increase the
appropriate score if it is larger than 100. Then we’ll create a large explosion and destroy the
tank. The large explosion object will automatically restart the room once the animation is
finished.

Adding a damage mechanism to the parent tank object:

1. Reopen obj_tank_parent and select the Create event. Include a Set Variable action
with Variable set to damage and Value set to 0.

2. Add a Step, Step event and include a Test Variable action. Set Variable to damage, Value
to 100, and Operation to smaller than. Include an Exit Event action so that no further
actions are executed if the damage is smaller than 100.

3. Now we need to find out what type of tank we are dealing with. Include a Test Variable
action with Variable set to object_index, Value set to obj_tank1, and Operation set to
equal to. Include a Set Variable action with Variable set to global.score2, Value set
to 1, and the Relative option enabled. This will then increase player two’s score if this
instance is player one’s tank.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS196

6153CH10.qxd 3/23/06 10:02 AM Page 196

4. Include an Else action followed by a Set Variable action. Set Variable to global.score1
and Value to 1, and enable the Relative option. This will increase player one’s score if
this instance is player two’s tank.

5. Include a Create Instance action with Object set to obj_explosion_large and the
Relative option enabled.

6. Finally, include a Destroy Instance action.

Obviously, we need to draw some kind of health bar so that the players can see how well
they are doing. It would be easiest to use the Draw event of the parent tank object to do this,
but there is a problem. The two tank objects already have their own Draw events so they won’t
normally execute the Draw event of the parent object because their own takes priority. Fortu-
nately, we can use the Call Parent Event action in the two tanks’ own Draw events to make
sure that the parent’s Draw event is called as well.

Adding a draw event to the parent tank object to draw the health bars:

1. Add a Draw event for the parent tank object.

2. Include a Set Health action (score tab) and set Value to 100-damage. Damage is the
opposite concept to health, so subtracting it from 100 makes this conversion (e.g.,
80 percent damage converts to 100 – 80 = 20 percent health).

3. Add a Draw Health action. Set X1 to -20, Y1 to -35, X2 to 20, and Y2 to -30. Enable the
Relative option, but leave the other parameters as they are. This will draw a small
health bar above the tank. It may seem strange to be using the health functions here
as they only work with one health value and we have two players. However, this tech-
nique works because we set the health in step 2 using the instance’s own damage
variable, just before we draw the health bar.

4. Reopen obj_tank1 and select the Draw event. Include the Call Parent Event action
(control tab) at the end of the list of actions for this event. This will make sure that the
Draw event of the parent tank object is also executed.

5. Reopen obj_tank2 and select the Draw event. Include the Call Parent Event action
(control tab) at the end of the list of actions for this event.

With the damage and scoring mechanism in place, we can now create the tank shells. We
only want the player’s shells to damage their opponent’s tank, so we will create a separate shell
object for each tank and put common behavior in a shell parent object. We’ll also use an alarm
clock to give shells a limited life span (and therefore a limited range). Alarm clocks will also
help us to temporarily demolish the second wall type when they are hit by shells. We’ll move
the walls outside the room and use an alarm event to bring them back to their original posi-
tion after a period of time.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 197

6153CH10.qxd 3/23/06 10:02 AM Page 197

Creating the parent shell object:

1. Create a sprite called spr_shell using Shell.gif and Center the Origin. Note that
like the tank sprite, this contains 60 images showing the shell pointing in different
directions.

2. Create a new object called obj_shell_parent and leave it without a sprite (you can set
it, but it isn’t necessary for the parent as it never appears in the game).

3. Add a Create event and include the Set Alarm action. Set the Number of Steps to 30
and select Alarm 0.

4. Add an Alarm, Alarm 0 event and include the Destroy Instance action.

5. Add a Step, End Step event and include the Change Sprite action. Set Sprite to
spr_shell, Subimage to direction/6, and Speed to 0 (to stop it from animating).

6. Add a Collision event with obj_wall1 and include a Create Instance action. Set Object
to obj_explosion_small and enable the Relative option. Also include a Destroy
Instance action to destroy the shell.

7. Add a Collision event with obj_wall2. This object must be temporarily removed.
Include a Create Instance action with Object set to obj_explosion_small and the
Relative option enabled. Include a Jump to Position action with X and Y set to 100000.
Also select the Other object for Applies to so that the wall is moved rather than the
shell.

8. Include a Set Alarm action and select the Other object for Applies to so that it sets an
alarm for the wall. Select Alarm 0 and set Number of Steps to 300. Finally, include a
Destroy Instance action to destroy the shell.

9. Add a Collision event with obj_shell_parent and include a Create Instance action. Set
Object to obj_explosion_small and enable the Relative option. Also include a Destroy
Instance action to destroy the shell.

We now need to make sure that any removed obj_wall2 instances are returned to their
original position when the alarm clock runs out. We will also need to check that the original
position is empty first, as we did for the locks in Koalabr8.

Editing the destructible wall object to make it reappear:

1. Reopen the obj_wall2 object and add an Alarm, Alarm 0 event. Include a Check
Empty action with X set to xstart, Y set to ystart, and Objects set to All. Include a
Jump to Start action.

2. Next include an Else action followed by a Set Alarm action. Select Alarm 0 and set
Number of Steps to 5. That way, when the position is not empty it will wait five more
steps and then try again.

We can now create the actual shell objects.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS198

6153CH10.qxd 3/23/06 10:02 AM Page 198

Creating the players’ shell objects:

1. Create a new object called obj_shell1. Give it the shell sprite and set its Parent to
obj_shell_parent.

2. Add a Collision event with obj_tank2 and include a Set Variable action. Set Variable to
damage and Value to 10, and enable the Relative option. Also select the Other object for
Applies to so that the tank’s damage variable is changed.

3. Include a Create Instance action with Object set to obj_explosion_small and enable
the Relative option. Also include a Destroy Instance action to destroy the shell.

4. Repeat steps 1–3 to create obj_shell2 using a Collision event with obj_tank1 rather
than obj_tank2.

Finally, we’ll add the actions to make the tanks fire shells. Player one’s tanks will shoot
shells of type obj_shell1 when the spacebar is pressed, and player two’s tank will shoot shells
of type obj_shell2 when the Enter key is pressed. As in the Wingman Sam game, we’ll limit the
speed with which the player can fire shells using a can_shoot variable. To create bullets that
face in the same direction as the tank, we will use the Create Moving action and pass in the
tank’s own direction variable.

Adding events to make the tank objects fire shells:

1. Reopen the parent tank object and select the Create event. Include a Set Variable
action with Variable set to can_shoot and Value set to 0.

2. Select the Step event and include a Set Variable action at the beginning of the list of
actions. Set Variable to can_shoot and Value to 1, and enable the Relative option.

3. Reopen obj_tank1 and add a Key Press, <Space> event. Include the Test Variable
action, with Variable set to can_shoot, Value set to 0, and Operation set to smaller
than. Next include the Exit Event action so that the remaining actions are only
executed when can_shoot is larger or equal to 0.

4. Include a Create Moving action. Set Object to obj_shell1, Speed to 16, and Direction
to direction, and enable the Relative option. Also include a Set Variable action with
Variable set to can_shoot and Value set to -10.

5. Repeat steps 3–4 for the obj_tank2, this time using a Key Press, <Enter> event for the
key and obj_shell2 for the Create Moving action.

That completes the shells. Test the game carefully and check yours against the one in the
file Games/Chapter10/tank2.gm6 on the CD if you have any problems.

Secondary Weapons
We’re going to include secondary weapons and pickups to increase the appeal of the game.
Pickups will appear randomly in the battle arena and can be collected by driving into them.
Each tank can only have one secondary weapon active at once, so picking up a new weapon

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 199

6153CH10.qxd 3/23/06 10:02 AM Page 199

will remove the current one. Toolboxes can also be collected to repair some of the tank’s dam-
age, but these will remove any secondary weapons too. All the secondary weapons will have
limited ammunition, so the players must take care to make the most of them.

We’ll use just one object for all these different kinds of pickups and change its appearance
depending on the type of pickup. We’ll use a variable called kind to record what sort of pickup
it is by setting its value to 0, 1, 2, or 3. The value 0 will stand for the homing rocket, 1 for the
bouncing bomb, 2 for the shield, and 3 for the toolbox. We can then choose a pickup type at
random by using the choose() function. To make things more interesting, the pickup will
change its kind from time to time and jump to a new position. It will also jump to a new posi-
tion when it is collected by a tank.

Creating the pickup object:

1. Create a sprite called spr_pickup using Pickup.gif. Note that it consists of four com-
pletely different subimages, representing each different kind of pickup.

2. Create a new object called obj_pickup and give it the pickup sprite.

3. Add a Create event and include the Set Variable action. Set Variable to kind and Value
to choose(0,1,2,3). This will choose randomly between the numbers in brackets that
are separated by commas.

4. Include the Set Alarm action for Alarm 0 and set Number of Steps to 100+random(500).
This will give a random time between 100 and 600 steps or about 3 and 20 seconds.
Finally, include a Jump to Random action with the default parameters. This will move
the instance to a random empty position.

5. Add an Alarm, Alarm 0 event and include the Set Variable action. Set Variable to kind
and Value to choose(0,1,2,3).

6. Include the Set Alarm action for Alarm 0 with Number of Steps set to
100+random(500). Finally, include a Jump to Random action.

7. Add a Collision event with obj_tank_parent and include a Jump to Random action.

8. Add a Draw event and include the Draw Sprite action. Set Sprite to spr_pickup,
Subimage to kind and enable the Relative option.

Now reopen the room and add a few instances of the pickup object to it. Test the game to
make sure that the pickups have different images and that they change their type and position
from time to time. Also check out what happens when you drive over one with your tank.

We’ll also need to record the kind of pickup that has been collected by the tank so that it
can change its secondary weapon. We’ll use the variable weapon for this, where a value of -1
corresponds to no weapon. The variable ammunition will indicate how many shots the tank has
left of this weapon type. Once ammunition reaches 0, weapon will be set to -1 to disable the sec-
ondary weapon from then on. We’ll check the value of the pickup object’s kind variable in the
collision event, and use it to set the tank’s weapon accordingly.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS200

6153CH10.qxd 3/23/06 10:02 AM Page 200

Editing the parent tank object to record pickups:

1. Reopen obj_tank_parent and select the Create event.

2. Include a Set Variable action with Variable set to weapon and Value set to -1. Include a
second Set Variable action with Variable set to ammunition and Value set to 0.

3. Add a Collision event with obj_pickup and include a Test Variable action. Set Variable
to other.kind, Value to 3, and Operation to equal to. A value of 3 corresponds to the
toolbox. This needs to repair the tank’s damage, so include a Start Block action to
begin the block of actions that do this.

4. Include a Set Variable action with Variable set to weapon and Value set to -1.
Include a second Set Variable action with Variable set to damage and Value set to
max(0,damage-50). The function max decides which is the largest of the two values you
give it (more about functions in Chapter 12). Therefore, this sets the new damage to
the largest out of damage-50 and 0. In effect, this subtracts 50 from damage but makes
sure it does not become smaller than 0. Include an End Block action.

5. Include an Else action, followed by a Start Block action to group the actions that are
used if this is not a toolbox pickup.

6. Include a Set Variable action with Variable set to weapon and Value set to other.kind.
Include another Set Variable action with Variable set to ammunition and Value set
to 10.

7. Finally, include an End Block action.

Obviously, it will help players to be able to see the type of secondary weapon they’ve col-
lected and the ammunition they have remaining for it. We’ll display this below each tank using
a small image of the pickup. These images have been combined into one sprite again, so we’ll
need to test the value of weapon and draw the corresponding subimage if it is equal to 0, 1, or 2.
We can then also draw the value of the variable ammunition next to it.

Displaying the secondary weapon in the parent tank object:

1. Create a new sprite called spr_weapon using Weapon.gif. Note that it consists of three
subimages (no image is required for the toolbox).

2. Create a font called fnt_ammunition and keep the default settings for it.

3. Select the Draw event in obj_tank_parent and include a Test Variable action. Set
Variable to weapon, Value to -1, and Operation to larger than. This will ensure that we
only draw something when there is a secondary weapon. Include a Start Block action
to group the drawing actions.

4. Include the Draw Sprite action and select spr_weapon. Set X to -20, Y to 25, and
Subimage to weapon. Also enable the Relative option.

5. Include a Set Color action and choose black. Then include a Set Font action, selecting
fnt_ammunition and setting Align to left.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 201

6153CH10.qxd 3/23/06 10:02 AM Page 201

6. Next include a Draw Variable action with Variable set to ammunition, X set to 0, Y set to
24, and the Relative option enabled.

7. Finally, include an End Block action to conclude the actions that draw the weapon
information.

Test the game to check that the weapon icons are displayed correctly when you collect
the different weapon pickups. However, so far only the repair kit actually does anything
for the player, so let’s start by sorting out the rocket. It will behave in much the same way as
the shell but automatically starts moving in the direction of the enemy tank. We’ll use the
same structure of objects as we did for the shell, with common behavior contained in a parent
rocket object (obj_rocket_parent) and separate rocket objects that home in on the different
tanks (obj_rocket1 and obj_rocket2). We’ll also make obj_shell_parent the parent of
obj_rocket_parent so that it inherits obj_shell_parent’s Collision and Alarm events. How-
ever, we don’t want obj_rocket_parent to have the same Create and End Step events as
obj_shell_parent so we’ll give it new versions of these events that give the rocket a longer
lifetime and draw the correct sprite.

Creating the parent rocket object:

1. Create a sprite called spr_rocket using Rocket.gif and Center the Origin.

2. Create a new object called obj_rocket_parent and set Parent to obj_shell_parent.

3. Add a Create event and include the Set Alarm action. Set Number of Steps to 60 and
select Alarm 0.

4. Add a Step, End Step event and include a Change Sprite action. Select the rocket
sprite, then set Subimage to direction/6 and Speed to 0.

Next we create the two actual rocket objects.

Creating the actual rocket objects:

1. Create a new object called it obj_rocket1 and give it the rocket sprite. Set Parent to
obj_rocket_parent.

2. Add a Create event and include the Move Towards action. Set X to obj_tank2.x, Y to
obj_tank2.y, and Speed to 8.

3. Add a Collision event with obj_tank2 and include a Set Variable action. Select Other
from Applies to (the tank), set Variable to damage and Value to 10, and enable the
Relative option.

4. Include a Create Instance action, selecting obj_explosion_small and enabling the
Relative option. Also include a Destroy Instance action.

5. Create obj_rocket2 in the same way, but move toward obj_tank1 in the Create event,
and add a Collision event with obj_tank1 for the actions in steps 3 and 4.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS202

6153CH10.qxd 3/23/06 10:02 AM Page 202

Finally, we need to make it possible for the tanks to fire rockets. We’ll check whether they
have the weapon and ammo in the Key Press event of the sceondary fire key. If they do, then
we’ll create the rocket and decrease the ammunition. When it reaches 0, we’ll set weapon to –1
to disable it.

Adding events to shoot rockets for the tank object:

1. Reopen the first tank object and add a Key Press, <Ctrl> event. Include a Test Variable
action, with Variable set to can_shoot, Value set to 0, and Operation set to smaller
than. Next include the Exit Event action so that the remaining actions are only exe-
cuted when can_shoot is larger than or equal to 0.

2. Include the Test Variable action, with Variable set to weapon, Value set to 0, and Opera-
tion set to equal to. Next include a Test Instance Count action with Object set to
obj_tank2, Number set to 0 and Operation set to larger than. Follow this with a Create
Instance action for obj_rocket1, and enable the Relative option. This creates a rocket
only when it is the current secondary weapon and the other tank exists (this avoids a
rare error when the other tank has just been destroyed).

3. Next we need to decrease the ammunition. Include a Set Variable action with Variable
set to ammunition, Value set to –1, and the Relative option enabled. Include a Test
Variable action with Variable set to ammunition, Value set to 1, and Operation set to
smaller than. Follow this with a Set Variable action with Variable set to weapon and
Value set to -1.

4. Finally, include a Set Variable action with Variable set to can_shoot and Value set
to -10.

5. Repeat steps 1–4 for obj_tank2, using a Key Press, Others, <Delete> event and creating
obj_rocket2.

Now we’ll create the bouncing bomb secondary weapon in a similar fashion. It behaves in
the same way as the shell except that it bounces against walls.

Creating the bouncing bomb objects:

1. Create a sprite called spr_bouncing using Bouncing.gif and Center the Origin.

2. Create a new object called obj_bouncing_parent and set its Parent to
obj_shell_parent.

3. Add a Collision event with obj_wall1 and include the Bounce action. Select precisely
and set Against to solid objects.

4. Add a similar Collision event with obj_wall2.

5. Add a Step, End Step event and include a Change Sprite action. Select spr_bouncing,
set Subimage to direction/6, and set Speed to 0.

6. Create a new object called obj_bouncing1 and give it the bouncing bomb sprite. Set its
Parent to obj_bouncing_parent.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 203

6153CH10.qxd 3/23/06 10:02 AM Page 203

7. Add a Collision event with obj_tank2 and include a Set Variable action. Select Other
from Applies to, set Variable to damage, set Value to 10, and enable the Relative option.
Include a Create Instance action for obj_explosion_small and enable the Relative
option.

8. Include a Destroy Instance action.

9. Repeat steps 6 and 7 to create obj_bouncing2 using a Collision event with obj_tank1.

Before we add actions to make the tank objects shoot bouncing bombs, we’ll create the
final special weapon: the shield. This is a bit more complicated as it allows the player to tem-
porarily make their tank invincible. Activating the shield will set a new variable called shield
to 40, and display a shield sprite. The value of shield will be reduced by 1 in each step until it
falls below 0 and the shield is disabled again. We’ll check the value of shield each time the
tank is hit and only increase its damage when shield is less than 0.

Editing the parent tank object to support shields:

1. Create sprites called spr_shield1 and spr_shield2 using Shield1.gif and Shield2.gif
and Center their Origins.

2. Reopen the parent tank object and select the Create event. Include a Set Variable
action with Variable set to shield and Value set to 0.

3. Select the Step event and include a Set Variable action at the start of the list. Set
Variable to shield, set Value to –1, and enable the Relative option.

4. Reopen obj_shell1 and select the Collision event with obj_tank2. Include a Test Vari-
able action directly above the Set Variable that increases the damage. Select Other
from Applies to, then set Variable to shield, Value to 0, and Operation to smaller
than. Now the damage will only be increased when the tank has no shield.

5. Repeat step 4 for objects obj_shell2, obj_rocket1, obj_rocket2, obj_bouncing1, and
obj_bounding2.

6. Reopen obj_tank1 and select the Draw event. Include a Test Variable action at the
start of the action list. Set Variable to shield, Value to 0, and Operation to larger than.
Follow this with a Draw Sprite action for spr_shield1 with the Relative option
enabled.

7. Repeat step 6 for obj_tank2, this time drawing spr_shield2.

Now all that remains is to adapt the tanks so that both the bouncing bombs and the
shields can be used.

Editing tank objects to shoot bombs and use shields:

1. Reopen obj_tank1 and select the Key Press, <Ctrl> event.

2. Include a Test Variable action below the Create Instance action that creates
obj_rocket1. Set Variable to weapon, Value to 1, and Operation to equal to. Follow this
with a Create Moving action for obj_bouncing1, setting Speed to 16 and Direction to
direction, and enabling the Relative option.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS204

6153CH10.qxd 3/23/06 10:02 AM Page 204

3. Include another Test Variable action below this, with Variable set to weapon, Value
set to 2, and Operation set to equal to. Follow this with by a Set Variable action with
Variable set to shield and Value set to 40.

4. Repeat steps 1–3 for obj_tank2, adapting the Key Press, <Delete> event and creating
obj_bouncing2.

This completes all the secondary weapons and the game should now be fully playable.
We encourage you to play it a lot with your friends, to make sure everything is working as it
should. You’ll find the current version on the CD in the file Games/Chapter10/tank3.gm6.

Views
Currently, our playing area is quite small and both players can see all of it at once. However,
we can create more interesting gameplay by giving each player a limited “window” into a
much larger playing area. This can easily be achieved in Game Maker using views. We’ll use
two views to create a split screen, in which the left half of the screen shows the area around the
first tank and the right half shows the area around the second tank. Later we use a third view
to display a little mini-map as well.

To understand the concept of views, you need to appreciate that there is a distinction
between a room and the window that provides a view of that room on the screen. Up to now,
rooms have always been the same size as the window and the window has always showed the
entire contents of the room. However, rooms can be any size you like, and views can be used
to indicate the specific area of the room that should appear in the window. We’re going to cre-
ate a room that’s twice the width of a normal room with an equal height (see Figure 10-2). The
green rectangle shows the size of a normal room, and the red and blue squares show the size
of the views we will give to each player in the room. To create these views, we will need to
specify the following information on the views tab in the room properties:

• View in room: This is an area of the room that needs to be displayed in the view. The X
and Y positions define the top-left corner of this area and W and H specify the width
and height of it.

• Port on screen: This is the position on the window where the view should be shown.
The X and Y positions define the top-left corner of this area and W and H specify the
width and height of it. If the width and height are different from the size of the view
area, then the view will be automatically scaled to fit. Game Maker will also automati-
cally adapt the size of the window so that all ports fit into it.

• Object following: Specifying an object here will make the view track that object as it
moves around the room. Hbor and Vbor specify the size of the horizontal and vertical
borders that you want to keep around the object. The view will not move until the edge
of the screen is closer than this distance from the object. Setting Hbor to half the width
of the view and Vbor to half the height of the view will therefore maintain the object in
the center. Finally, Hsp and Vsp allow you to limit the speed with which the view moves
(–1 means no limit).

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 205

6153CH10.qxd 3/23/06 10:02 AM Page 205

Figure 10-2. We’ll create a large room, much bigger than a normal window (green rectangle), and
provide views into it for each of the tanks (red and blue squares).

You can specify up to eight different views, but you’ll probably only need one or two. Let’s
adapt our game’s room to use two views.

Editing the room resource to provide two views:

1. Reopen the main room and switch to the settings tab.

2. Set both the Width and Height of the room to 1280, to create a much larger room.

3. Switch to the objects tab and add wall instances to incorporate the extra playing area.
Start the tanks close to two opposite corners and add six pickup instances. Also don’t
forget that the room needs exactly one instance of the controller object.

4. Switch to the views tab and select the Enable the use of Views option. This activates
the use of views in this room.

5. Make sure that View 0 is selected in the list and enable the Visible when room starts
option. We will use this view for player one.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS206

6153CH10.qxd 3/23/06 10:02 AM Page 206

6. Under View in room set X to 0, Y to 0, W to 400, and H to 480. The X and Y positions
of the views don’t really matter in this case as we will make them follow the tanks.
Nonetheless, notice that lines appear in the room to indicate the size and position
of the view.

7. Under Port on screen set X to 0, Y to 0, W to 400, and H to 480. This port will show
player one’s view on the left side of the screen.

8. Under Object following select obj_tank1, then set Hbor to 200 and Vbor to 240. The
form should now look like Figure 10-3.

9. Now select View 1 in the list and enable the Visible when room starts option. We will
use this view for player two.

10. Under View in room set X to 0, Y to 0, W to 400, and H to 480.

11. Under Port on screen set X to 420, Y to 0, W to 400, and H to 480. This places the second
view to the right of the first view with a little space between them.

12. Under Object following select obj_tank2, and set Hbor to 200 and Vbor to 240.

Figure 10-3. This is how the form should look when the values for View 0 have been set.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 207

6153CH10.qxd 3/23/06 10:02 AM Page 207

And that’s it. Easy, wasn’t it? Run the game and you should be able to play in the new split-
screen mode.

■Tip The empty region between the views defaults to the color black. You can change this in the Global
Game Settings on the graphics tab under Color outside the room region.

Have you noticed something strange? The score is displayed at a fixed position in the
room so you can only see it if you drive up to it! To fix this we need to draw it at a changing
position relative to the player’s views. The score for player one needs to appear in the top-
right corner of View 0 and the score for player two needs to appear in the top-left corner of
View 1. Game Maker provides variables that we can use to obtain the positions of views.
view_xview[0] and view_yview[0] indicate the current x- and y-positions of View 0 while
view_xview[1] and view_yview[1] indicate the x- and y-positions of View 1.

Unfortunately, this does not solve the problem completely. To explain why, you’ll need to
understand what Game Maker is doing when you use views. For each view, Game Maker draws
the whole room, including all the backgrounds, objects, and Draw events; clips the visible
area to the size of the view; and then copies it to the required position on the window. This
means the Draw event of the controller object (that draws the score) is called twice, once
for drawing each of the views. So, to display the score in the correct place we need to know
which view is currently being drawn. Game Maker allows us to check this using the variable
view_current, which will be 0 for View 0 and 1 for View 1. Therefore, we can test the value of
this variable in the Draw event of the controller object and draw the score of the appropriate
tank relative to the position of the current view.

Editing the controller object to draw the score relative to the view position:

1. Reopen the controller object and select the Draw event.

2. Include a Test Variable action before the Draw Variable action that draws the score for
player one. Set Variable to view_current, Value to 0, and Operation to equal to.

3. Edit the Draw Variable action that draws player one’s score. Change X to
view_xview[0]+380 and Y to view_yview[0]+10.

4. Include a Test Variable action before the Draw Variable action that draws the score for
player two. Set Variable to view_current, Value to 1, and Operation to equal to.

5. Edit the Draw Variable action for player two. Change X to view_xview[1]+20 and Y to
view_yview[1]+10. The action list should now look like Figure 10-4.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS208

6153CH10.qxd 3/23/06 10:02 AM Page 208

Figure 10-4. These actions draw the scores correctly for each view.

Run the game to check that the score is displayed correctly.
We’ll now add a little mini-map to help the player see where they are. This mini-map

shows the entire room, so that both players can see the location of their opponents and the
pickups in the room. Creating a mini-map is very simple using views, as we can create an
additional view that includes the whole room but scales it down to a small port on the screen.

Adding a view to create a mini-map:

1. Reopen the main room and switch to the views tab.

2. Select View 2 in the list and enable the Visible when room starts option.

3. Under View in room set X to 0, Y to 0, W to 1280, and H to 1280 (the entire room).

4. Under Port on screen set X to 350, Y to 355, W to 120, and H to 120. No object needs to
be followed.

And that finishes the game for this chapter. Run it and check that it all works. There are a
few final improvements you might want to make. You should add some Game Information
and you might want to change some of the Global Game Settings. For example, you might not
want to display the cursor but might want to start in full-screen mode or add a loading image
of your own for the game.

■Tip To improve the mini-map and make it more “iconic,” you could make the different objects draw
something different when the variable view_current is equal to 2. For example, the pickup object could
simply display a red disk and the walls could draw black squares.

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS 209

6153CH10.qxd 3/23/06 10:02 AM Page 209

Congratulations
That’s another one complete! We hope you enjoyed making this game and playing it with your
friends. The final version can be found on the CD in the file Games/Chapter10/tank4.gm6. You
encountered some important new features of Game Maker in this chapter, including views,
which can be used to create all sorts of different games.

There are many ways in which you could make Tank War more interesting. You could cre-
ate different arenas for the players to compete in. Some could be wide and open while others
could have close passageways. You could also add other types of walls, perhaps stopping shells
but not the tanks, or even the other way around. You could create muddy areas that reduce
your speed, or slippery areas that make it difficult to steer your tank. Of course, you can also
add other types of secondary weapons, such as guns that fire sideways or in many different
directions. You could even drop mines or create holes in the ground. You could also add a
front-end to the game, displaying the title graphic that is supplied. You’re the designer and it’s
up to you.

We’ll be staying with our Tank War example in the next chapter as we explore the game
design issues involved in creating multiplayer games. We’ve got some different versions of the
game for you to play and you’ll be balancing tanks, so you’d better go and find some king-
sized scales!

CHAPTER 10 ■ COMPETIT IVE GAMES: PLAYING FAIR WITH TANKS210

6153CH10.qxd 3/23/06 10:02 AM Page 210

Game Design: Balance in
Multiplayer Games

Multiplayer games offer game designers many additional ways to create playing experi-
ences that are fun. Even games that are not very enjoyable on your own can be very addictive
when playing with or against other human players. Harnessing this power requires designing
games that treat all players fairly but still allow them to make the kind of meaningful choices
that make games interesting to play. In this chapter we’ll discuss some of the strategies you
can use to strike the right balance in your own multiplayer games.

Competition and Cooperation
Competition and cooperation form the basis of all multiplayer games. No matter how con-
vincing a computer-controlled character is, it never produces the same thrill as another
human being taking part in the game. In this section we’ll discuss some approaches for
creating multiplayer game modes and the pros and cons of each.

Independent Competition
The simplest way to create a competitive game mode is to make players take turns playing the
single-player game and declare the player who does the best to be the winner. A long time
ago, this was a common way of adding a multiplayer mode to a game, but these days players
expect more. Another basic method is to split the screen so that both players play the single-
player mode at the same time in different sections of the screen. Figure 11-1 shows how the
Super Rainbow Reef game from Chapter 6 might look as a split-screen multiplayer game.

The important thing to note about both of these competitive modes is that neither creates
interactions between the players—each player is expected to play independently, and their
performance is compared at the end of the game. While such approaches offer an easy way to
include a competitive mode, the results are generally not nearly as much fun as when there
are interactions between the players.

211

C H A P T E R 1 1

6153CH11.qxd 3/24/06 10:59 AM Page 211

Figure 11-1. A split-screen multiplayer mode for Super Rainbow Reef might look something
like this.

Dependent Competition
Competitive games that create interactions between players provide each player with a game-
play experience that is dependent on their opponent. Often this is achieved by setting the
gameplay within a shared environment and providing competing goals (as in the Tank War
game). However a shared environment is not always necessary: dependent competition could
be added to the split-screen Super Rainbow Reef example by including power-up bricks that
affect the opposing player’s starfish or shell. This would also make each player’s experience
dependent on the other and add an extra competitive edge to the game.

Dependent competition may harness more of the competitive potential of multiplayer
games, but it has its own drawbacks. Independent competition usually gives both players a
decent chance to enjoy the game—even if one player is much less skilled than the other.
Dependent competitions can often be over very quickly when players’ skills aren’t equally
matched and soon stop being fun for both players. For this reason, many competitive games
include features to rebalance the competition, such as handicap settings or weaker characters
for more skillful players to use. Many even include hidden catch-up mechanisms, whereby the
losing player is given better power-ups to try to even out the competition.

It’s also worth remembering that competition is not everyone’s idea of fun, and its appeal
depends a lot on individual personality. For every player who craves the adrenaline rush of a
head-to-head competition, there’s another who hates the confrontation that this kind of
gameplay creates. Fortunately, multiplayer games don’t have to be competitive at all, and
many players can get just as much enjoyment from cooperative game modes.

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES212

6153CH11.qxd 3/24/06 10:59 AM Page 212

Independent Cooperation
The game Wingman Sam provides a multiplayer mode with mostly independent cooperation.
It allows players to work toward the same goal, but they are not necessarily required to work
together or interact with each other to achieve it. This is usually the most practical way of
including a cooperative game mode as it means that each of the players can survive on their
own if one player dies. This is fairly essential for coin-operated arcade games, as players would
feel cheated if their game ended just because their partner had run out of money! Fortunately,
home computer games are free to encourage more collaborative forms of play that require
players to interact with each other in order to survive.

Dependent Cooperation
Dependent cooperation encourages players to interact or collaborate in order to achieve the
game’s goals rather than just both being on the same side. One way of achieving this is to give
your players different roles or skills within the game. For example, in Wingman Sam we could
make one player control a slow bomber with lots of forward firepower, while the other player
has a smaller fighter plane with excellent maneuverability. This then forces players to find col-
laborative strategies that utilize their own strengths and weaknesses to complete the game’s
goals.

While multiplayer games that encourage collaboration are often more interesting than
those requiring simple cooperation, you can’t assume that players will naturally know how to
collaborate effectively in your game. Modes in which collaboration is essential may be a cul-
ture shock for some players, and may require their own kind of training levels. In general, a
game design that rewards players for collaborating rather then punishing them for not collab-
orating should have a broader appeal.

Mix and Match
In practice, multiplayer games rarely fall neatly into one category. Cooperative games often
turn competitive for a while when a health pickup appears on the screen, and competitive
games often involve a whole set of unwritten rules that players cooperate to enforce. Even our
Wingman Sam example encourages collaboration when one player is about to die, as this ends

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES 213

6153CH11.qxd 3/24/06 10:59 AM Page 213

the game for both players. Multiplayer games rely on human beings interacting with one
another, so they are rarely simple or predictable! Nonetheless, they do provide a powerful
way to motivate players, allowing designers to create some of the most enjoyable playing
experiences around.

Balanced Beginnings
Although not everyone plays multiplayer games just to win, nobody plays them to lose
unfairly. Players need to feel that multiplayer games give them as much chance of winning as
other players. Creating different sides with balanced abilities is not an easy task, and is a bit
like trying to work out how many apples equal so many pears. In this section, we’ll take you
through a practical technique for ensuring that your characters are balanced using the Tank
War example from the previous chapter.

Equivalent Characters
Providing all players with directly equivalent features is a sure way to guarantee that no player
has an unfair advantage. This kind of equivalence is obvious in Tank War, where, aside from
their color, the red and blue tanks are identical. Nonetheless, games may often provide a num-
ber of characters to choose from that look completely different but play identically in the
game. Equivalent characters can be a good option to include for die-hard gamers who want to
prove that they’re better than their opponents in a straight fight. However, carefully balanced
differences between characters can often make a more interesting multiplayer game and
increase the longevity of the gameplay.

Balancing Differences
Including gameplay differences between characters provides players with meaningful choices
right from the start of the game. However, having such choices soon becomes meaningless if
players discover that one character always has an advantage over the others. From this point
on, the game degenerates into a competition (or fight) to choose that character first as it usu-
ally determines the outcome of the game! The players might as well toss a coin to decide the

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES214

6153CH11.qxd 3/24/06 10:59 AM Page 214

winner. Making sure that this doesn’t happen requires careful planning and thorough play
testing. We’re going to create heavy and light tanks as balanced alternatives to the basic tank
in Tank War. We’ll start by making a list of tank characteristics that could be varied to make the
game more interesting, as follows:

• Rate of fire—How fast the vehicle can shoot its main weapon

• Shot damage—The amount of damage caused by each shot of its main weapon

• Shot speed—The speed at which shells fly through the air

• Vehicle armor—The proportion of damage that is absorbed by the vehicle’s armor

• Vehicle speed—The speed at which the vehicle moves forward

• Rate of turn—The speed at which a vehicle can turn on the spot

• Vehicle size—The size of the vehicle (the larger the size of the target, the easier it is
to hit)

We probably won’t want to change the vehicle size, but it’s worth noting so that we don’t
accidentally change the gameplay later by making the light tank smaller than the heavy one.
Next, let’s create a table for each vehicle type and list the strengths and weaknesses we want
them to have for each characteristic (see Table 11-1). The idea is to produce a different profile
for each vehicle that balances out their abilities. There’s not much point in trying to assign
relative values to each strength or weakness at this stage. It’s not really possible to say, for
example, how slow one vehicle’s speed should be to compensate for its high shot damage (it’s
like comparing apples and pears). It may seem safe to assume relationships between some
characteristics; if you half the shot speed but double the damage, then it should have the same
overall firepower. However, in practice they actually produce two very different weapons that
favor different situations and strategies (as should become apparent).

Table 11-1. Tank Characteristics

Characteristic Heavy Tank Basic Tank Light Tank

Rate of fire Weakness -- Strength

Shot damage Strength -- Weakness

Shot speed Strength -- Weakness

Vehicle armor Strength -- Weakness

Max speed Weakness -- Strength

Rate of turn Weakness -- Strength

Now we need to create a test bed that allows you to alter all these characteristics for each
vehicle while you are playing the game. A test bed is not something that the player gets to use,
so it doesn’t need to look very pretty or have a fantastic interface, as long as it is practical and
doesn’t crash. We’ve already created one for you in Games/Chapter11/new_tank1.gm6 on the
CD. This time you’ll need to copy it into a directory on your computer along with the file
tankdata.txt—that’s so the game can read and write to the data file. Now load it up and run

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES 215

6153CH11.qxd 3/24/06 10:59 AM Page 215

the game. Clicking on either tank will cycle between the three different tank types available:
light, basic, and heavy. Pressing the Shift key will toggle a test panel at the bottom of the
screen, allowing you to tweak the characteristics for each tank (see Figure 11-2). Left-clicking
on a value will increase it, and right-clicking will decrease it. The settings are automatically
saved and loaded to the data file so that they’re not lost next time you play the game. You can
look at the contents of this file by double-clicking on it in Windows, and if you’re very careful,
then you can edit it this way too.

At the moment, the settings for each tank are exactly the same as the original. Your first
job is to change them so that they have the strengths and weaknesses given in Table 11-1. It’s
difficult to know where to start, but just try adding or removing values and seeing what differ-
ence they make to the way the tank handles. Changes should take effect immediately, but you
may need to close the debug panel for the game to run at full speed again (just press Shift
again). Begin by driving and firing each tank on your own until you’re fairly happy with the
changes that you’ve made.

Figure 11-2. The new version of Tank War features different types of tanks and a panel for
changing their characteristics.

Next, find yourself an opponent (preferably someone who is about the same standard as
you) and start playing the game. Systematically play every combination of tanks (see Table 11-2)
and battle it out in order to establish whether any of the tanks has an unfair advantage over

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES216

6153CH11.qxd 3/24/06 10:59 AM Page 216

the others. When you find that one does, make some tweaks to balance things out and try
again. Make sure you stick broadly to the original strengths and weaknesses in the table,
though—it’s no use slowly changing all their settings to be equivalent again! You may have to
go through the table several times in order to make sure that your changes haven’t unbalanced
tanks that you tested earlier. Nonetheless, if you (and your opponent) are prepared to put
the effort in, then you should eventually reach a stage where all the tanks are fairly equally
matched without being the same.

Table 11-2. All the Combinations of Tanks

Your Tank Your Opponent’s Tank

Light Light

Light Basic

Light Heavy

Basic Light

Basic Basic

Basic Heavy

Heavy Light

Heavy Basic

Heavy Heavy

Well done—you will have probably learned more about game balance from this exercise
than we could ever teach you from just reading about it, but here are a few things that you
may have thought about during this process:

• Which characteristics are the most/least important?

• How does this depend on the player’s individual abilities and strategies? (Try always
driving backwards, if you haven’t done so already).

• How much do the characteristics required for balanced tanks change as players get bet-
ter at the game? (Try watching some beginners play the game now that it’s “balanced.”)

• Do you still have a preference for one type of tank? Does this matter?

• Would these same settings be useful for creating progression in a single-player mode
against the computer?

• Are your settings realistic, and does it matter if they’re not?

Give yourself a pat on the back if you already found yourself asking some of these ques-
tions when you were playing the game. Asking yourself questions like this is an important part
of expanding your own understanding of game design. Unfortunately, there are often no right
answers to questions like these—in fact, there are few answers in game design that apply to
every situation you’ll come across. Becoming an expert at game design (or anything really) is
not about learning a set of “answers” from a book, but using your knowledge and experience
to ask the right questions in a given situation. Does it matter if the tank settings are realistic?

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES 217

6153CH11.qxd 3/24/06 10:59 AM Page 217

Well, it depends on who your target audience is. It probably doesn’t for the kind of game we’re
creating here, but if we were making a combat simulation, then realism might be more impor-
tant to the player than balance.

Okay, so this is one type of balance—where the characteristics of each player are balanced
to provide an equal chance of winning from the start of the game. However, there are other
ways to achieve balance in games that involve balancing the range of choices that the players
get to make throughout the game.

Balanced Choice
Just because players start off on an equal footing doesn’t necessarily mean that the game will
remain balanced. In some ways, this is expected—after all, one player has to win the game
at some point by gaining an advantage. Nonetheless, it is still important to offer players a fair
and balanced opportunity to make choices within the game. In this section, we’ll discuss
some simple and more advanced techniques for doing this.

Weighting Choices
Imagine Tank War as a strategy game, where—rather than driving a single tank—players have
to train squads of tanks and send them off to fight battles and conquer territory. As time pro-
gresses, each player accumulates resources that they can spend on creating light, basic, or
heavy tanks. However, if all the tanks are equally balanced in combat, then deciding which
ones to create is not a very meaningful choice. In this situation, it would be better to have a
hierarchy of tanks going from light to heavy and weight the choices accordingly. So a heavy
tank may be as good as three basic tanks, but it takes three times as long to accumulate the
resources needed to build it. Alternatively, we might make it only take twice as long to build
but require the player to invest resources building a heavy armor factory first. In this way, we
encourage the players to choose between making an early investment for a delayed reward or
making an early decisive strike on the enemy.

Weighting choices in this way helps to make the options that players have in the game
both interesting and fair. However, once one player has built an army larger than their oppo-
nent, then the outcome of the game becomes fairly predictable. Once a player knows they can
easily win outright with their superior might, the remainder of the game becomes less inter-
esting for both players. Including cyclic relationships between the tank types can remove this
predictability and ensure that even one-sided battles have to be fought with strategies in order
to come out on top.

Cyclic Relationships
If you’ve ever played rock, paper, scissors, then you’ve experienced a cyclic relationship (and
if you haven’t, then you must be from another planet). This ancient game has a balance and
simplicity to it that can be applied to more complicated games as well. So far we have dis-
cussed a linear hierarchy of tanks where heavy tanks are better than basic tanks, and basic
tanks are better than light tanks. This is like rock beating scissors and scissors beating paper.
However, paper also beats rock, ensuring that rock doesn’t become the dominant choice for

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES218

6153CH11.qxd 3/24/06 10:59 AM Page 218

players to make. Admittedly, players might get a bit annoyed if their hard-earned heavy tanks
could be beaten outright by light tanks, but that doesn’t mean that they couldn’t be more
vulnerable to light tanks than they might otherwise be. After all, heavy tanks are slow and
clumsy compared to light tanks that can hit and run more easily. So we could deliberately
build in cyclic vulnerabilities into the relationship so that light tanks punch beyond their
weight (in many ways) against heavy tanks, heavy tanks do the same to basic tanks, and basic
tanks do the same to light tanks (see Figure 11-3).

Figure 11-3. This diagram shows the cyclic relationship in tank types.

Adding this kind of relationship forces a player to fight more tactically, bringing in differ-
ent tanks to support each other depending on the type of enemy they are facing. This creates
a more interesting game, and one in which a clever tactician can turn the tables on his oppo-
nent even when fighting against superior numbers.

This same principle can be even applied to our original single combat version of Tank
War. Copy the file Games/Chapter11/new_tank2.gm6 from the CD to the same directory as
before. You’ll need to make a backup copy of tankdata.txt if you want to keep your old
characteristics settings, as this program will write over your old file. If you run the game, you’ll
see that we’ve changed things a bit; both tanks now start the game as weaponless tank bodies.
The weapons now appear as pickups on the map that give you all the characteristics of the
appropriate tank until you collect a different one. This means that you can roam around the
map switching tank types more or less as you please. While this is already an interesting varia-
tion on the original game, you can improve on it by creating a cyclic relationship between the
tanks. Try playing the game with a friend and tweaking the characteristics again until the basic
tank has an advantage over the light tank, the heavy tank over the basic tank, and the light
tank over the heavy tank. One way to achieve this is to make the light tank so nimble that the
heavy tank can’t catch it, while making its bullets slow enough that they linger around the
map after the light tank has moved on. Combined with moving backward and firing, this
makes the light tank a nifty opponent—although you’ll need to make sure that the medium
tank can beat it!

You’ll know when you have the right balance; you should notice it turning into a game of
cat and mouse, where the cat and mouse keep switching as players try to gain an advantage.
When player one picks up the heavy gun, player two goes for the light gun, then player one
goes for the basic gun, and so on. This style of play is a lot of fun and illustrates well how cyclic
relationships can improve the playability of your multiplayer games.

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES 219

6153CH11.qxd 3/24/06 10:59 AM Page 219

Balanced Computer Opponents
Many multiplayer games include the option for computer-controlled opponents to make up
the numbers in games. Unsurprisingly, players expect the same level of fairness against com-
puter opponents as human ones. In Chapter 14 you’ll make a game with some very simple
artificial intelligence (AI), but in this section we’ll briefly discuss some of the broader implica-
tions of AI for game balance.

Artificial Stupidity
For computer games, the term artificial intelligence is deceptive as it suggests that computer
opponents should behave as intelligently as possible. In practice, a balanced computer oppo-
nent is one that behaves as humanly as possible, which is as much about human failings as
human intelligence. A computer-controlled player without any failings is even more frustrat-
ing to play against than a human player with an unfair advantage. To a computer, making the
perfect shot is child’s play—you’re in its world and playing by its rules. It has instant access to
everything there is to know about the playing world and can process it a million times faster
than you can!

Ideally then, computer opponents in multiplayer games should play by the same rules as
you. They should refrain from using their god-like knowledge of the world to see past your
diversionary attack, they should go to pieces under pressure, and they should occasionally just
screw up because they got distracted! However, while these are good aims for a professional AI
programmer, there is nothing wrong with using the computer’s natural advantages to help you
take your first steps in AI. Make use of every advantage the computer has, but remember to
add a few random commands to make it look less than perfect. A player only needs to feel that
the computer doesn’t have an unfair advantage, and what they don’t know can’t hurt them!
Given half a chance, players will naturally project human characteristics onto the behavior of
computer opponents. An enemy that occasionally doesn’t shoot when there’s a clear shot can
look like they haven’t spotted the player. An opponent who randomly spins out on the corner
of a racetrack can be seen as caving under pressure. A liberal use of the random command can
hide a multitude of programming sins and give your artificial intelligence the apparent human
fallibility that it needs.

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES220

6153CH11.qxd 3/24/06 10:59 AM Page 220

Summary
In this chapter we’ve looked at different kinds of balance in multiplayer games, but many of
the same principles apply to balancing computer opponents in single-player games as well.
Balance is ultimately about ensuring that players have a fair chance of winning the game, and
that’s what players want in single-player games too. Here’s a summary of the main points dis-
cussed in this chapter to help you with designing your own multiplayer games:

• Make multiplayer games more fun to play by

• Including competition and cooperation.

• Making players’ interactions with the game dependent on each other.

• Balancing the game for players.

• Multiplayer games can be balanced by

• Providing equivalent characters (less desirable).

• Providing balanced characters with different strengths and weaknesses.

• Weighing choices to provide interesting trade-offs.

• Including cyclic relationships to provide richer gameplay.

• Characteristics can be balanced by

• Creating a test bed that allows characteristics to be tweaked in real time.

• Play testing.

• Play testing.

• More play testing.

Well, that’s it for another part of the book. This is the last chapter on game design, but
there’s still plenty more to learn about game programming. Prepare yourself for a few frights
as you go exploring for ancient treasure in haunted Egyptian tombs. On the way, you’ll learn
about the deeper workings of Game Maker and discover the power behind the icons—in the
form of the programming language GML. Good luck!

CHAPTER 11 ■ GAME DESIGN: BALANCE IN MULTIPLAYER GAMES 221

6153CH11.qxd 3/24/06 10:59 AM Page 221

6153CH12.qxd 3/20/06 5:08 PM Page 222

Enemies and
Intelligence

You’ve come a long way, but Game Maker’s greatest treasure still lies undisturbed . . .

Dare you unleash the arcane powers of GML?

P A R T 5

6153CH12.qxd 3/20/06 5:08 PM Page 223

6153CH12.qxd 3/20/06 5:08 PM Page 224

GML: Become a Programmer

So far we’ve controlled the behavior of the different objects in our games using events and
actions. These actions let the instances of the object perform tasks when certain events occur
in the game. In this chapter we are going to define those tasks in an alternative way: by using
programs. Programs define tasks through lines of text called code that use functions instead of
actions. This extends the scope of Game Maker considerably as there are only about 150 dif-
ferent actions but close to a thousand functions. These functions give you much more control
than actions, allowing you to define precisely how tasks should be performed in different cir-
cumstances.

The text in a program needs to be structured in a very particular way so that Game Maker
can understand what you mean. Communicating with Game Maker in this way is like learning
a new language with its own special vocabulary and grammar. The programming language
Game Maker uses is called GML, which stands for Game Maker Language. If you have written
programs before in languages like Java or C++, then you will notice that GML is rather similar.
However, every programming language has its own peculiarities, so you will need to watch out
for the differences.

Before we go into more detail about GML, you need to know how to tell Game Maker to
execute a program using a script resource. Script resources are similar to other resources like
sprites and backgrounds in the way they are created and accessed through the resource list.
You create a script resource by choosing Create Script from the Resources menu, and then
typing your program into the text editor that appears. Once you’ve created your script, you
can include an Execute Script action to call the script in a normal event just as you would for
any other action. We’ll see how this works in more detail next.

■Note You can also use an Execute Code action for including GML. Dragging this action into an event will
cause the editor to pop up so that you can type the program directly into the event. Although this method is
sometimes easier, it is often better to use scripts because they can be reused more easily.

To help you come to grips with GML, in this chapter we’re not going to create a whole
game but just small examples. Unfortunately, because of its size, we cannot cover all of GML,
but we will discuss many key aspects. You can always refer to the Game Maker documentation
for a complete overview.

225

C H A P T E R 1 2

6153CH12.qxd 3/20/06 5:08 PM Page 225

Hello World
We’ll start with a traditional program to demonstrate how to write some simple code. We’re
going to create a script that shows the message “Hello World” on the screen.

Creating a simple script:

1. Start a new game.

2. Choose Create Script from the Resource menu. The script editor shown in Figure 12-1
will appear.

3. In the Name box in the toolbar, give the script the name scr_hello.

4. In the editor, type the following piece of code:

{

show_message('Hello World');

}

5. Press the 10/01 button in the toolbar. This will test the program and display an error
message if you made a mistake.

6. Close the editor by clicking the green checkmark in the toolbar.

Figure 12-1. Enter this code in the script editor.

Note that Game Maker shows parts of the code in different colors. This color-coding helps
you know when your code is written correctly. For example, we know that show_message is the
correct name for one of Game Maker’s built-in functions because it has turned blue. If we had
made a spelling mistake, then it wouldn’t turn blue and we would know something was wrong.
It is also particularly important to give your scripts meaningful names; that way, you can
remember what the script does when you use it in an action or some other code.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER226

6153CH12.qxd 3/20/06 5:08 PM Page 226

Before we can see what this code does, we need to execute it. To do so, we must create a
new object with a key press event that executes the script.

Executing the script:

1. Create a new object and add a Key press, <Space> event to it.

2. Include the Execute Script action (control tab) and select the scr_hello script from
the menu. The arguments can all be left at 0 since we do not use arguments in this
script (more about these later). The action should look like Figure 12-2.

3. Create a room and place one instance of the object in it.

Figure 12-2. This action executes the scr_hello script.

Now run the game and press the spacebar. If you did everything correctly, a message box
should pop up containing the text “Hello World”. If you made a mistake in your script, then
Game Maker will report an error when the game loads or when the script is executed. If you do
get an error, you should check the script carefully for typing errors. Even using an uppercase
letter rather than lowercase can cause an error in GML—so take great care. You’ll also find this
short program in the file Games/Chapter12/hello_world.gm6 on the CD.

Now let’s consider what this script does. The first and last lines contain curly brackets.
Different kinds of brackets signify different things in GML, and curly brackets mark the begin-
ning and end of a block of code (a bit like the Start Block and End Block actions). However,
in GML every program must start with an opening curly bracket and must end with a closing
bracket. Curly brackets enclose a block of code. Such blocks of code will also be used later at
other places.

The program consists of just one command. Such commands are called statements. A
program consists of one or more statements. A statement ends with a semicolon. In this way,
Game Maker understands where one statement ends and the next one begins. Don’t forget the
semicolons!

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 227

6153CH12.qxd 3/20/06 5:08 PM Page 227

The statement in our program is a call to the function show_message(). Functions can be
recognized because they have a name and then (optionally) some arguments between the
parentheses. We have already used such functions before as arguments in actions. For example,
we’ve used the random() function in a number of places. Much like actions, functions perform
certain tasks. The show_message() function has one argument, which is the text to be displayed;
'Hello World' is that argument. Take note of the single quotes around it as they indicate that
this is a string (text). Also note that to make functions easier to recognize and to indicate that
you typed their name correctly, they are displayed in a dark blue color.

So when the script is executed, the one statement in it is executed, which shows the alert
box containing the text that is provided as an argument. Of course, we could have achieved
the same thing using the Show Message action. But as we will see later, by using scripts we can
do many new things.

Variables
We have used variables in previous chapters. In some cases, we have used the value of a vari-
able (such as an object’s position or speed) as a parameter to an action to change its behavior.
Sometimes we have used an action to change the value of a variable. Let’s now look in more
detail at the use of variables, and see how to use them in scripts.

Variables are containers that store values—these values can be changed throughout the
course of a game. Such a value can either be a number or a string. A variable is given a name
that we can refer to, and we use the name to inspect the current value and to change it. There
are a number of built-in variables, like x and y, which indicate the position of an instance,
or like speed and direction, which indicate the speed and direction in which an instance is
moving. Changing a variable in a script is very simple. We use the = symbol to assign a new
value. For example, to set an instance in the middle of the room, we could use the following
piece of code:

{

x = 320;

y = 240;

}

The program starts and ends with curly brackets, as any program must do. There are
two statements here, each ending with a semicolon. These both are assignment statements,
or assignments for short. An assignment assigns a value to a variable. The first assignment
assigns the value 320 to the variable x, which is the horizontal position of the instance. The
second assigns the value 240 to the variable y, which is the vertical position of the instance.
Note that when you type in the piece of code, the variable names will become blue. This color
is used for built-in variables.

Rather than assigning a simple value to a variable, we can write a complete expression
involving operators (+, -, *, /, and a couple more) and values and other variables. For example,
the previous piece of code assumes that the room is 640✕480. If we don’t know this, we can
also write the following:

{

x = room_width/2;

y = room_height/2;

}

CHAPTER 12 ■ GML: BECOME A PROGRAMMER228

6153CH12.qxd 3/20/06 5:08 PM Page 228

Here, room_width and room_height are two variables that indicate the width and height of
the room; by dividing them by 2, we get the middle of the room. We can also use functions in
the expressions. For example, as you have seen before, the function random() gives a random
number smaller than its argument. To move our instance to a random position on the screen,
we can use the following code:

{

x = random(room_width);

y = random(room_height);

}

Rather than using the built-in variables, we can also create our own. You do so simply by
picking a name and assigning a value to it. Names of variables should only consist of letters
and numbers and the underscore (_) symbol. The first character cannot be a number. You
should always make sure that your variable names differ from the names of resources or from
existing variables or function names. It is vitally important to realize that variable names are
case-sensitive—that is, Name is not the same as name.

Let’s make our “Hello World” example a bit more personal. We will ask the player for
their name and then greet them in a personal way. You can find the program in the file
Games/Chapter12/hello_you.gm6 on the CD.

{

yourname = get_string('Who are you?','nobody');

show_message('Hello ' + yourname + '. Welcome to the game.');

}

We use a new function here called get_string(). This function asks the player to enter
some text. The function has two arguments. The first one indicates the question to display,
and the second one is the default answer. Note the single quotes around the strings. Also note
that the two arguments are separated by a comma. Arguments in functions are always sepa-
rated by commas. This function returns the text that the player typed in. The assignment
assigns this value to a new variable we call yourname. Next we use the function show_message()
again to display a message. The argument, though, might look a bit weird. We include three
strings, one of which is stored in the variable yourname. When used on strings, the + operator
will simply put the strings next to each other—that is, it concatenates the strings. Better try
this out in the same way we did for the “Hello World” example.

As you might have realized, the program we just wrote does something that cannot be
achieved when only using drag-and-drop actions. It asks the player for some information.
Scripts are a lot more powerful than drag-and-drop actions. That is why it is very useful to
spend some time learning to write scripts.

You might wonder what happens to the variable yourname after the script has finished.
Well, it is actually stored with the instance. Later on, in other scripts for this instance, we can
still use it. So the user has to enter their name only once. But other instances of the same
object or other objects cannot access it directly. It belongs to this particular instance.

There are actually three different types of variables. By default, the variable is stored with
the instance and remains available. Each instance can have its own variable using that name.
For example, each instance has its own x and y variables. Sometimes, when you use a variable
in a script, you don’t want it to remain available when the script is finished. In this case, you
need to indicate that it is a variable inside the script, as follows:

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 229

6153CH12.qxd 3/20/06 5:08 PM Page 229

{

var yourname;

yourname = get_string('Who are you?','nobody');

show_message('Hello ' + yourname + '. Welcome to the game.');

}

By adding the line var yourname; we indicate that the variable yourname is defined only in
this script. We call it a local variable. You can put multiple variables here, with commas sepa-
rating them. We strongly recommend that you make a variable local whenever possible; it
speeds things up and avoids errors when you’re reusing the same variables.

Sometimes, though, you want the variable to be available to all instances of all objects.
For example, multiple instances might want to use the name of the player once it has been
asked using the get_string() function. In this case, we want to make the variable global to all
instances. As we have seen in previous chapters, we can achieve this by adding the keyword
global and inserting a dot in front of the variable name, as follows:

{

global.yourname = get_string('Who are you?','nobody');

show_message('Hello ' + global.yourname + '. Welcome to the game.');

}

Note that the word global appears in boldface. It is a special word in the GML language;
such keywords are always shown in bold. The word var is also a keyword. We will see many
more of these in this chapter. In some sense, the curly brackets are also keywords and appear
in bold as well.

To summarize, we have three different ways in which we can use variables:

• Belonging to one instance, by simply assigning a value to them

• Local to a script, by declaring them inside the script using the keyword var

• Global to the game, by preceding the name with the keyword global and a dot

■Note Global variables remain available when you move to a different room. So, for example, you can ask
the player for his name in the first room, store the name in a global variable, and then use that variable in all
other rooms in the game.

Functions
Functions are the most important ingredients of a program; they are the things that let Game
Maker perform certain tasks. For every action there is a corresponding function, but there are
many, many more. In total, close to a thousand functions are available that deal with all
aspects of your game, such as motion, instances, graphics, sound, and user input.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER230

6153CH12.qxd 3/20/06 5:08 PM Page 230

We have already used a few functions earlier. Also, you saw two different types of
functions. Functions, like the show_message() function, only perform certain tasks. Other
functions, like random() and get_string(), return a value that can then be used in expressions
or assignments.

When we use a function, we say that we call the function. A function call consists of the
name of the function, followed by the arguments, separated by commas, in parentheses. Even
when a function has no arguments, you must still use the parentheses. Arguments can be
values as well as expressions. Most functions have a fixed number of arguments, but some
can have an arbitrary number of arguments.

Let’s look at some examples. GML provides a large number of functions for drawing
objects. These functions should normally only be used in the Draw event of objects. There are
functions to draw shapes, sprites, backgrounds, text, and so on. If you have registered your
version of Game Maker, you also have access to lots of additional drawing functions for creat-
ing colorized shapes, rotated text, and even three-dimensional objects. To use some drawing
functions, create a script with the following code:

{

draw_set_color(c_red);

draw_rectangle(x-50,y-50,x+50,y+50,false);

draw_set_color(c_blue);

draw_circle(x,y,40,false);

}

This piece of code first calls a function to set the drawing color. c_red is a built-in value
that indicates the red color. Next, this code draws a rectangle with the indicated corners. The
fifth argument, which has the value false, indicates that this must not be an outlined rectan-
gle. Next, the color is set to blue, and finally a filled circle is drawn. To use this script, create an
object (it does not need a sprite), and then add a Draw event and include an Execute Script
action to call the script. Add a number of instances of the object to a room and check out the
result. You can find the program in the file Games/Chapter12/draw_shapes.gm6 on the CD.

As a second example, let’s consider the creation of instances. Often during games you
want to create instances of objects. The function instance_create() can be used for doing just
this. This function has three arguments. The first two arguments must indicate the position
where you want to create the instance and the third argument must indicate the object of
which the instance must be created. Assume we want to create a bullet and fire it in the direc-
tion of the instance that creates it. This can be achieved with the following piece of code
(which assumes that an object obj_bullet exists):

{

var bullet_instance;

bullet_instance = instance_create(x,y,obj_bullet);

bullet_instance.speed = 12;

bullet_instance.direction = direction;

}

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 231

6153CH12.qxd 3/20/06 5:08 PM Page 231

In this code we first declare a local variable bullet_instance that is only available in this
piece of code. Next, we call the function to create the instance. This function returns an ID of
the new instance, which we store in the variable bullet_instance. An ID is simply a number
that can be used to refer to the particular instance. To set the speed of this instance, we change
the variable speed in the instance to 12. We do this by using bullet_instance.speed, similar
to how we addressed variables in objects. In the same way, we set the direction of instance
bullet_instance to the direction of the current instance.

Conditional Statements
As you know, in Game Maker there are conditional actions that control whether or not a block
of actions is executed. When using scripts, you can use conditional statements in a similar way.
A conditional statement starts with the keyword if followed by an expression between paren-
theses. If this expression evaluates to true, the following statement or block of statements is
executed. So a conditional statement looks like this:

if (<expression>)

{

<statement>;

<statement>;

...

}

The statements between the curly brackets are only executed when the expression is true.
In the expression, you can use comparison operators to compare numbers as follows:

• < means smaller than.

• <= means smaller or equal.

• == means equal (note that we need two = symbols, to distinguish the comparison from
the assignment).

• != means unequal.

• >= means larger or equal.

• > means larger than.

You can combine comparisons using && (which means and), || (which means or), or !
(which means not). For example, to indicate that the x value should be larger than 200 but
smaller than the y value, you can write something like this: (x > 200) && (x < y).

■Note The use of parentheses (like in the previous example) is not always strictly necessary, but it can
help make things a lot clearer.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER232

6153CH12.qxd 3/20/06 5:08 PM Page 232

Let’s consider an example. We want an instance to wrap around the screen—that is, if its
x-position gets smaller than 0 while it is moving to the left, we change the x-position to 640,
and when it gets larger than 640 and it is moving to the right, we change it to 0. Here is the
corresponding piece of code:

{

if ((x<0) && (hspeed<0))

{

x = 640;

}

if ((x>640) && (hspeed>0))

{

x = 0;

}

}

Note the use of opening and closing brackets. It is important to carefully check whether
they match. Forgetting a bracket is a very common error when writing programs. This code
could even be a bit more compact. Note that in a program the layout of the code is up to you.
We used a rather standard layout style in this example; we used indents to show which bits of
code belong together. Although employing a clear layout style is useful, in this case we’ve over-
done it a bit. Also, when only one statement follows a conditional statement, we do not need
the curly brackets. So, we might as well use the following piece of code, which does exactly the
same thing:

{

if ((x<0) && (hspeed<0)) x = 640;

if ((x>640) && (hspeed>0)) x = 0;

}

As with conditional actions, the conditional statement can have an else that is executed
when the condition is not true. The structure then looks as follows:

if (<expression>)

{

<statement>;

...

}

else

{

<statement>;

...

}

For example, assume that we have a monster that should move horizontally in the
direction of the player. So, depending on where the player is, the monster should adapt its
direction. If the player is an instance of the object obj_player, we can use the following
piece of code:

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 233

6153CH12.qxd 3/20/06 5:08 PM Page 233

{

if (x < obj_player.x)

{

hspeed = 4; vspeed = 0;

}

else

{

hspeed = -4; vspeed = 0;

}

}

We test whether the x-coordinate of the current instance (the monster) is smaller than the
x-coordinate of an instance of object obj_player. If so, we set the motion to the right; else, we
set the motion to the left. As we saw earlier, we can address the value of a variable in another
instance by preceding it with the ID of that instance and a dot. This time we do it slightly dif-
ferently, and indicate the object that the instance belongs to. This will work equally well,
assuming just one instance of obj_player exists. If there are several player objects, however,
only one of them is chosen for comparison and the code may not function as you expect.

Repeating Things
Often in code you want to repeat certain things, and there are a number of ways to achieve
this. We call such a piece of code a loop. We will start with the easiest way to repeat a piece of
code a given number of times: the repeat statement. It looks like this:

repeat (<expression>)

{

<statement>;

<statement>;

...

}

The expression must result in an integer value; the block of code following it is executed
that number of times. Let’s look at an example. In the following program we ask the player for
a value and then create the given number of balls at random positions. It assumes that an
object obj_ball exists.

{

var numb;

numb = get_integer('Give the number of balls:',10);

repeat (numb)

{

instance_create(random(640),random(480),obj_ball);

}

}

CHAPTER 12 ■ GML: BECOME A PROGRAMMER234

6153CH12.qxd 3/20/06 5:08 PM Page 234

The program asks the player for an integer number, using the function get_integer(),
and stores it in the local variable numb. Next it repeats a piece of code numb times, each time
creating a new ball at a random position. The example Games/Chapter12/balls.gm6 on the
CD uses this script.

A second way of repeating code is when we want to repeat something as long as some
expression is true. For this we use the while statement:

while (<expression>)

{

<statement>;

<statement>;

...

}

The while statement is similar to the if statement, but there is an important difference:
when the expression is true, the block after the if statement is executed exactly once. How-
ever, the block after the while statement is executed for as long as the condition is true. If you
are not careful, this code can loop forever, in which case the game will no longer respond.

In this example, we are going to draw 40 concentric circles in different colors:

{

var i;

i = 0;

while (i<40)

{

var color;

color = make_color_rgb(random(256),random(128),random(64));

draw_set_color(color);

draw_circle(x,y,2*i,true);

i = i+1;

}

}

■Note A color is represented as a number. Such a number consists of three parts, one to indicate the blue
component, one to indicate the green component, and one to indicate the red component. Each of these
components is a number between 0 and 255. Here we use the function make_rgb_color() to combine
these three components (each a random number) into a single color. In order to make the effect prettier, we
have biased the numbers toward red and orange by using a larger red component than green and blue. It
may seem confusing to use random(256) rather than random(255) to get a number between 0 and 255,
but the random() function always returns a number less than the parameter passed in, so if we used 255
we would not get the full color range.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 235

6153CH12.qxd 3/20/06 5:08 PM Page 235

In the program we first initialize the local variable i with a value of 0. Next, we run a
loop as long as i is smaller than 40. In the loop we create a random color using the function
make_color_rgb(), and set the drawing color. Next we draw a circle with radius 2*i, and finally
we increase i. After the loop has been executed 40 times, the condition becomes false and the
loop ends. The example Games/Chapter12/draw_circles.gm6 on the CD uses this script to cre-
ate a rather funny effect.

This type of while loop—in which we first initialize a variable, test the value in the while
statement, and increase the variable in every execution of the loop—occurs very often. Hence,
there is an easier way to write it: the for loop. It looks like this:

for (<initialize>;<condition>;<increment>)

{

<statement>;

<statement>;

...

}

The initialize statement is executed once before the loop starts. The condition is then
checked at the beginning of each loop execution to see whether the loop must still be exe-
cuted. The increment statement is executed at the end of each loop execution. So our circle
example can also be written as follows:

{

var i;

for (i=0; i<40; i=i+1)

{

var color;

color = make_color_rgb(random(256),random(128),random(64));

draw_set_color(color);

draw_circle(x,y,2*i,true);

}

}

Note that loops can contain further loops. For example, to create 10 columns comprising
eight balls each, we can use the following piece of code:

{

var i,j;

for (i=0; i<10; i+=1)

{

for (j=0; j<8; j+=1)

{

instance_create(40*i,40*j,obj_ball);

}

}

}

Note that we use the expression i+=1. This is a shortcut for i = i+1. It adds 1 to the
variable i.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER236

6153CH12.qxd 3/20/06 5:08 PM Page 236

■Warning During the execution of a repeat, while, or for loop, no events or actions are processed. So
make sure the loop always ends and does not take too long as this might interrupt the game play.

Arrays
Variables are infinitely useful in scripts, but they can only store one value each—in a number
of situations you’ll want to store a whole collection of values, and arrays allow us to do this.
An array can store an arbitrary number of values. To get a particular value out of an array you
have to specify the index. To this end, you put the index between square brackets. For exam-
ple, if aaa is an array, you can obtain the fifth element in it by typing aaa[5]. Using arrays in
GML is very easy. There is no need to declare them or to specify their length. Only when you
want a local array should you declare it using the var keyword. Let’s create a simple example in
which we compute and store the squares of the numbers 1 through 30, and then draw them
on the screen:

{

var i, squares;

for (i=1; i<=30; i+=1)

{

squares[i] = i*i;

}

for (i=1; i<=30; i+=1)

{

draw_text(10,15*i,string(squares[i]));

}

}

The first loop fills the array with the values, and the second loop draws them on the
screen. Note that the function string() turns the integer value into a string, which can then
be drawn. Clearly this script is a bit useless; there is no need to first store the values in the
array. You might as well have drawn them directly.

■Warning Make sure that you first store a value into an element of an array before you try to retrieve it.

Let’s now consider a slightly more interesting example. Assume we want to make a game
containing a number of math questions. The game should ask a random question and then
check the answer that the player gives. We can store all questions and answers in an array. We
need two scripts: one that fills the array and one that asks the questions. The first script looks
like this:

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 237

6153CH12.qxd 3/20/06 5:08 PM Page 237

{

question[0] = 'How much is 12+34?';

question[1] = 'How much is 4*6?';

question[2] = 'How much is 72/9?';

question[3] = 'How much is 56-23?';

question[4] = 'How much is 7*11?';

question[5] = 'How much is 71+24?';

question[6] = 'How much is 84/7?';

question[7] = 'How much is 69-37?';

question[8] = 'How much is 45+74?';

question[9] = 'How much is 12*12?';

answer[0] = 46;

answer[1] = 24;

answer[2] = 8;

answer[3] = 33;

answer[4] = 77;

answer[5] = 95;

answer[6] = 12;

answer[7] = 32;

answer[8] = 119;

answer[9] = 144;

}

Note that we do not use local variables. The arrays are now stored in the instance. This
script should be called just once when the instance is created. The second script asks a ques-
tion and checks the answer:

{

var ind,val;

ind = floor(random(10));

val = get_integer(question[ind],0);

if (val == answer[ind])

show_message('That is the correct answer.')

else

show_message('That answer is WRONG!');

}

We create a random integer index between 0 and 9. Next we ask the corresponding ques-
tion and store the result in the variable val. Finally we compare val with the correct answer
and display the appropriate message. You can call this script, for instance, in a mouse press
event. For an example, see Games/Chapter12/quiz.gm6 on the CD.

■Note The index of an array must be 0 or larger.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER238

6153CH12.qxd 3/20/06 5:08 PM Page 238

The arrays we’ve seen so far store a row of values. In some situations, we may need a com-
plete matrix of values—for example, to represent the stones in a playing field. This is achieved
very simply. Rather than using one index we use two indexes, separated by a comma. So you
can write aaa[5,8]. To illustrate, let’s create a multiplication table in which mult[i,j] is equal
to i*j. The following piece of code achieves this:

{

var i, j, mult;

for (i=1; i<=10; i+=1)

{

for (j=1; j<=10; j+=1)

{

mult[i,j] = i*j;

}

}

}

In the next chapter we will see a number of such 2-dimensional arrays as we represent the
playing field for a Tic-Tac-Toe game in this way.

Dealing with Other Instances
As you know, you can apply actions to other instances. Sometimes within a script, you also
want to apply some code to other instances or objects. As we saw in the bullet example earlier
in the chapter, we can change a variable in another instance or object by preceding it with the
index of the instance or object and a dot. To apply more complicated code to other instances,
we can use the with statement. In a with statement, you specify the instance or object to
which a block of code must be applied. Globally it looks like this:

with (<index>)

{

<statement>;

<statement>;

...

}

The index should either be the index of an instance, as obtained when calling the
instance_create() function, or the index of an object (normally by giving its name), or the
keyword other to apply the block of code to the other object in a collision event. Here is an
example that destroys all balls in a game. obj_ball is the ball object.

{

with (obj_ball)

{

instance_destroy();

}

}

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 239

6153CH12.qxd 3/20/06 5:08 PM Page 239

And here is another example in which we create a bullet with a speed and direction of
motion:

{

var bullet_instance;

bullet_instance = instance_create(x,y,obj_bullet);

with (bullet_instance)

{

speed = 12;

direction = other.direction;

}

}

Note that we use other.direction within the block of code. Here, other refers to the
object for which the code was originally executed.

The with statement is very powerful, and understanding it will help you a lot in creating
effective code.

Scripts As Functions
In the Execute Script action, you can indicate a number of arguments. The values of these
arguments can then be used inside the script. In this way, you can create more generic scripts
that can be used at multiple places. Inside the script you can obtain the values of the argu-
ments using the variables argument0, argument1, argument2, and so on. (You can only obtain
the values from these variables; you cannot change them.)

Next, we create a script that draws a square and a filled circle at a given position on the
screen. We will use four arguments: two that indicate the position and two that indicate the
color of the square and the filled circle. Here’s the script:

{

draw_set_color(argument2);

draw_rectangle(argument0-50,argument1-50, argument0+50,argument1+50,false);

draw_set_color(argument3);

draw_circle(argument0,argument1,40,false);

}

Note that this script is largely the same as the one we showed you earlier, but this time we
used arguments to set the color and determine the position for drawing. To use the script we
include the Execute Script action in the Draw event of an object and indicate the value of the
arguments, as in Figure 12-3.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER240

6153CH12.qxd 3/20/06 5:08 PM Page 240

Figure 12-3. This action executes a script using arguments.

You can now use this script to draw the shape at other positions and with other colors as
well. You could also add the size of the shape as an additional argument to make the script
even more generic.

Scripts that you create yourself can be called inside other scripts in exactly the same way
as you call functions. You simply use the name of the script and add the arguments between
parentheses with commas between them. Remember that even if the script has no arguments,
you still need to include the parentheses but just leave them empty.

For example, the following script uses the scr_draw script to draw 100 shapes at random
locations with random colors:

{

repeat (100)

{

var color1;

var color2;

color1 = make_color_rgb(random(256),random(256),random(256));

color2 = make_color_rgb(random(256),random(256),random(256));

scr_draw(random(640),random(480),color1,color2);

}

}

You can call this script in the Draw event of an object. If you run the program you will
notice that the colors and positions change every step. This is of course precisely what we
indicated. If you want the positions and colors to stay the same, you could have stored them
in arrays. You can find this program in the file Games/Chapter12/draw_wild.gm6 on the CD.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 241

6153CH12.qxd 3/20/06 5:08 PM Page 241

■Note Scripts can actually call themselves. This is known as a recursive call. Be very careful with using
recursive calls, however, because they can easily lead to errors in which the script continues to call itself
forever.

We have seen that functions can return a value that can then be used in expressions.
We can also let a script return a value so that we can use it in expressions. For this you use
the return statement. Here is an example of a script that returns the squared value of its
argument:

{

return argument0*argument0;

}

Note that the execution of a script stops after a return statement. The rest of the script
will no longer be executed. As an example, here is a script that checks whether all 10 entries
of an array are equal to 0:

{

var i;

for (i=1; i<=10; i+=1)

{

if (aaa[i] != 0) return false;

}

return true;

}

Whenever one of the entries is not equal to 0, the value false is returned and the execu-
tion is stopped. Only when all entries are 0 is the final return true; statement executed.

Rather than putting your whole code in one script, it is often a good idea to split it into
several scripts and let these scripts call each other. That makes the code more readable and
makes it possible to use the same piece of code multiple times.

Debugging Programs
When creating scripts, you can easily make errors. You might misspell a function name or
forget a closing bracket. When running the game, this can result in two types of errors.

You might get an error during the loading of the game. This happens when you forget a
bracket, for example. The error message indicates in which script and on which line the error
occurs, and provides a brief explanation of the error. Carefully reading the error message will
help you solve the problem. You can also check for such problems by clicking the 10/01 button
in the toolbar of the script editor. A check is performed and when there is an error, this is
reported. The editor highlights the line where the error occurs, as shown in Figure 12-4. We
strongly recommend that you do this check after each change you make in the script.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER242

6153CH12.qxd 3/20/06 5:08 PM Page 242

Figure 12-4. After pressing the 10/01 key, an error is indicated in the script.

A second type of error can occur while a user is playing of the game—if you use a nonex-
istent variable, for example. Again an error message is displayed that should help you correct
the error. Such errors are more difficult to find. They typically occur when you’ve misspelled a
variable name or when you have used a variable name that was also the name of a resource.
So you must be careful when writing code.

Game Maker contains a debugger. When you run the game using the feature Run in
Debug Mode (located in the Run menu), an additional window will pop up, as shown in
Figure 12-5.

Figure 12-5. When running the game in debug mode, this debug window is shown.

The debug window allows you to pause and continue the game or step through it. Also,
you can check the value of different variables and even execute some code. For more details,
see the Game Maker documentation.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER 243

6153CH12.qxd 3/20/06 5:08 PM Page 243

Congratulations
You have now mastered the basics of programming in the GML language. We hope you have
realized that programming is not so difficult after all. Once you get the hang of it, program-
ming in GML is actually a lot easier and faster than using the drag-and-drop actions that you
used in previous chapters. Using scripts opens up a whole new set of possibilities in Game
Maker. More than half of the documentation of Game Maker deals with functions and built-in
variables that you can use to enhance your games in many ways. You will gain a lot more con-
trol over instances, rooms, views, sound, and graphics.

We did not describe the GML in full; it provides a number of additional statements and
constructions you can take advantage of. But we examined the ones that you will need most.
Once you are a bit more experienced with using the language, we recommend that you read
the GML section in the documentation, which covers the language in full.

In the next chapter we’ll create a game in which we only use scripts. The game will con-
tain just one instance of a single object in which just three scripts are called. This may sound
rather simple, but actually it is the first game in which the computer will be intelligent.

CHAPTER 12 ■ GML: BECOME A PROGRAMMER244

6153CH12.qxd 3/20/06 5:08 PM Page 244

Clever Computers: Playing
Tic-Tac-Toe

In this chapter we are going to create a version of the game tic-tac-toe in which you are
pitted against an intelligent computer opponent. This opponent must have a strategy that will
regularly beat the player to keep it challenging, but the computer opponent must not be too
strong; otherwise the player has no chance of winning, and will quickly become frustrated and
give up. We will also show how the computer can adapt its play to the level of the player. The
game will be almost completely written using the GML programming language, so make sure
you read and understood Chapter 12 on GML before starting this chapter.

Designing the Game: Tic-Tac-Toe
I am sure you’ll know how to play Tic-Tac-Toe, but even so, it is good to describe it carefully
before we start to aid you in making the game.

The game of Tic-Tac-Toe is played on a 3✕3 grid. The computer player uses red stones while
the human player uses blue stones. The players take turns placing a stone of their color on an
empty cell. When a player manages to create a horizontal, vertical, or diagonal row of three
stones of his color, he wins the game. When all cells are filled and no row is created, the game
ends in a draw.

The player uses the mouse to place the stones. The Esc key is used to end the game. The
game consists of an arbitrary number of rounds. In each round the player who lost the previous
round will start. The number of wins for each player and the number of draws are recorded, and
displayed on the game interface for reference. Figure 13-1 shows the game in action.

The game requires just a few ingredients: the playing field, the stones, and a mechanism
to show the number of wins. The most complicated part will be how to determine the moves
for the computer player. All the resources can be found in the Resources/Chapter13 folder on
the CD.

245

C H A P T E R 1 3

6153CH13.qxd 3/20/06 2:05 PM Page 245

Figure 13-1. The Tic-Tac-Toe game looks like this.

The Playing Field
We will first need two sprites for the stones, a background to contain the playing field, and
some sound effects. As this is a game in which the player is supposed to think a lot, back-
ground music is not really appropriate, so we won’t use it.

Creating sprites, a background, and sound effects:

1. Start a new game.

2. Create a new sprite using the file Stone1.gif from the Resources/Chapter13 folder on
the CD.

3. Create another sprite using the file Stone2.gif.

4. Create a background using the file Background.bmp.

5. Finally create sound effects using the files Place.wav, Win.wav, Lose.wav, and Draw.wav.

We will also need a font for our game. We will use this to draw the score, that is, how many
games are won by the player and the computer.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE246

6153CH13.qxd 3/20/06 2:05 PM Page 246

Creating a font:

1. Create a new font for the game. We named ours fnt_score. Select a nice font; for exam-
ple, Comic Sans MS, give it a size of 16, and select Bold.

The playing field is where all the action happens. We will create just one object in the
game, which represents the playing field, and there will be just one instance of this object in
the game. This object does not need a sprite, as the field is already drawn on the background.

Creating the field object and the room:

1. Create a new object. Give it the name obj_field. No sprite is required.

2. Create a new room. In the backgrounds tab, assign to it the background.

3. In the settings tab, give the room an appropriate caption.

4. In the objects tab, add one instance of the field object at an arbitrary place.

You might want to run the game just to test that the playing field is indeed there. Obvi-
ously, nothing can be done at this stage, as we are yet to specify the behavior for the field
object. We will only use scripts for this.

Internally we represent the playing field with a variable field that will be a two-
dimensional array. This variable represents the cells in the field, as shown in Figure 13-2.
Each entry can have three values: 0 means that the cell is empty, 1 means that the human
player placed a stone there, and 2 means that the computer player placed a stone there.

Figure 13-2. The playing field is represented by a two-dimensional array called field.

Let’s start by creating a script to initialize the field. Call this script scr_field_init. This
script must set all the field entries to 0. We will use two local variables for this, and then use a
double loop to fill in the entries, as shown in Listing 13-1.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 247

6153CH13.qxd 3/20/06 2:05 PM Page 247

Listing 13-1. The Script scr_field_init

{

var i,j;

// clear the field

for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)

field[i,j] = 0;

}

■Note Notice the line that starts with //. This line is a comment, so it is not really part of the program.
Comments are ignored by Game Maker, and exist purely to help you, or someone else, know what is going
on in the code—would you remember what all your variables and loops do when coming back to a piece of
code after six months?

The game must store the number of wins by the two players, as well as the number of
draws. For this we will use three variables: score_player, score_computer, and score_draw. To
initialize the game, we must initialize these variables to 0 and we must initialize the playing
field, as shown in Listing 13-2.

Listing 13-2. The Script scr_game_init

{

// initialize the score

score_player = 0;

score_computer = 0;

score_draw = 0;

// initialize the field

scr_field_init();

}

As you can see, we call the first script (scr_field_init) from within this script. Scripts can
be used as functions that can be called from other scripts—we will use this technique a lot in
our game. The scr_game_init script is executed from the Create event of the field object.

Creating and executing the scripts:

1. Create the two scripts, scr_field_init and scr_game_init, as described earlier.

2. Reopen the properties form of the field object by double-clicking on it in the
resource list.

3. Add a Create event. In it include the Execute Script action and indicate the script
scr_game_init.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE248

6153CH13.qxd 3/20/06 2:05 PM Page 248

The next step is to make it possible for the player to place stones. When the player clicks
the left mouse button on the screen, we must detect which cell the click occurs in. If the click
is outside the playing field or on a cell that is already filled, there will be no resulting action.

To determine the cell that has been clicked, we consider the current position of the
mouse, which is indicated by the global variables mouse_x and mouse_y. The cells each have a
size of 140✕140, so to get the correct cell index (0, 1, or 2), we divide the mouse position by 140
and then round it down to the nearest whole number using the floor() function. This would
give the correct cell index if our playing field were in the top-left corner of the screen. Because
the top-left corner of the field is at position (208,32), we must subtract this offset from the
mouse position, as we want the position relative to the top-left corner of the playing field, not
the top-left corner of the screen.

So, for example, say the human player clicks at x = 350. The sum we do is (350-208)/140 =
1.01. Rounded down, the result is 1, which tells us that the cursor has been clicked inside one
of the middle columns of cells (remember that the array starts at 0, not 1).

If the results of the calculations for x and y are less than 0 or more than 2, we ignore the
click. If they are in this range, we check whether the corresponding cell is empty. If the cell is
empty, we change its value to 1 to place the stone and play the sound effect.

The script looks like the one shown in Listing 13-3.

Listing 13-3. The Script scr_field_click

{

var i,j;

// find the position that is clicked

i = floor((mouse_x-208)/140);

j = floor((mouse_y-32)/140);

// check whether it exists and is empty

if (i<0 || i>2 || j<0 || j>2) exit;

if (field[i,j] != 0) exit;

// set the stone

field[i,j] = 1;

sound_play(snd_place);

}

Note that we use a new statement here: exit. The exit statement ends the execution of
the script. We need to call this script in the Global left pressed event. This event is called when
the left mouse button is pressed anywhere on the screen (not necessarily in the field object).

Creating the mouse click script:

1. Create the script scr_field_click, as shown earlier.

2. Reopen the properties form of the field object by double-clicking on it in the
resource list.

3. Add a Mouse, Global mouse, Global left pressed event. In it include the Execute Script
action and indicate the script scr_field_click.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 249

6153CH13.qxd 3/20/06 2:05 PM Page 249

If you run the game now, you will notice that you do hear the sound effect when you click
on a cell but that no stones appear. This makes sense, as we have not yet added any code to
draw the stones. Rather than using stone objects, we will create a script that draws the stones.
Actually, this script will draw everything that is required: the stones and the current score
(remember that the field does not need to be drawn as it is on the background image).

The script (shown in Listing 13-4) consists of two parts. First, all cells that are nonempty
are drawn. We use a double loop for this. Depending on the value of the field cell at that posi-
tion, the red or blue stone sprite is drawn. Second, the score is drawn. For this we set the
correct font and position, and for each line we set a different color. (Note that the function
string() turns a number into a string.)

Listing 13-4. The Script scr_field_draw

{

var i,j;

// draw the correct sprites

for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)

{

if (field[i,j] == 1)

draw_sprite(spr_stone1,0,208+140*i,32+140*j);

if (field[i,j] == 2)

draw_sprite(spr_stone2,0,208+140*i,32+140*j);

}

// draw the score

draw_set_font(fnt_score);

draw_set_halign(fa_right);

draw_set_color(c_blue);

draw_text(200,340,'Player Wins: ' + string(score_player));

draw_set_color(c_red);

draw_text(200,375,'Computer Wins: ' + string(score_computer));

draw_set_color(c_black);

draw_text(200,410,'Draws: ' + string(score_draw));

}

We must call this script in the Draw event of the field object.

Drawing the field:

1. Create the script scr_field_draw as described earlier.

2. Add the Draw event to the field object. In it include the Execute Script action and
indicate the script scr_field_draw.

Now when you test the game, you should be able to place stones. The computer opponent
is not yet doing anything, so only your own stones exist. In the next section we will create
some simple opponent behavior. The current version of the game can be found in the file
Games/Chapter13/tic_tac_toe1.gm6 on the CD.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE250

6153CH13.qxd 3/20/06 2:05 PM Page 250

Let the Computer Play
In this section, we are mainly going to concentrate on completing the first version of the game
by adding the logic for a simple computer opponent. But first we need some scripts to test
whether the player or the computer won the last game, or if it was a draw. We start with a
script to check whether the player did win. There are eight different lines of three stones that
can be filled to win: three horizontal ones, three vertical ones, and two diagonal ones. In the
script (shown in Listing 13-5), we simply test all of these to see whether the cells contain the
correct value. The function will return either the value true indicating that the player did win,
or false, indicating that the player did not yet win. The value returned by the script can then
be used later as a condition in other scripts. By this point you should know how to create a
script, so we will just show the code from here on out. If you are confused at any point,
remember that the game is available on the CD in Games/Chapter13/tic_tac_toe2.gm6, so
feel free to open it up and have a look.

Listing 13-5. The Script scr_check_player_win

{

if (field[0,0]==1 && field[0,1]==1 && field[0,2]==1) return true;

if (field[1,0]==1 && field[1,1]==1 && field[1,2]==1) return true;

if (field[2,0]==1 && field[2,1]==1 && field[2,2]==1) return true;

if (field[0,0]==1 && field[1,0]==1 && field[2,0]==1) return true;

if (field[0,1]==1 && field[1,1]==1 && field[2,1]==1) return true;

if (field[0,2]==1 && field[1,2]==1 && field[2,2]==1) return true;

if (field[0,0]==1 && field[1,1]==1 && field[2,2]==1) return true;

if (field[0,2]==1 && field[1,1]==1 && field[2,0]==1) return true;

return false;

}

■Note To check whether two values are equal, you must use ==, not =, as a single = is the assignment
operator. Also remember that once a return statement is reached, the rest of the script is not executed.

Checking whether the computer wins is exactly the same, except that this time, we are
testing whether the cells contain values of 2, not 1, as shown in Listing 13-6.

Listing 13-6. The Script scr_check_computer_win

{

if (field[0,0]==2 && field[0,1]==2 && field[0,2]==2) return true;

if (field[1,0]==2 && field[1,1]==2 && field[1,2]==2) return true;

if (field[2,0]==2 && field[2,1]==2 && field[2,2]==2) return true;

if (field[0,0]==2 && field[1,0]==2 && field[2,0]==2) return true;

if (field[0,1]==2 && field[1,1]==2 && field[2,1]==2) return true;

if (field[0,2]==2 && field[1,2]==2 && field[2,2]==2) return true;

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 251

6153CH13.qxd 3/20/06 2:06 PM Page 251

if (field[0,0]==2 && field[1,1]==2 && field[2,2]==2) return true;

if (field[0,2]==2 && field[1,1]==2 && field[2,0]==2) return true;

return false;

}

Checking for a draw is even simpler (see Listing 13-7)—we check all cells; if one is empty
we return false as there is still a move possible. Only when all cells are filled do we return
true.

Listing 13-7. The Script scr_check_draw

{

var i,j;

for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)

{

if (field[i,j] == 0) return false;

}

return true;

}

To act on the outcome of these three possibilities, we will use another script, as shown
in Listing 13-8. For each possible outcome, the correct score variable is increased; a sound
is played; we redraw the screen to actually show the last move and the new score; wait for a
second; show a message; and initialize the field again.

Listing 13-8. The Script scr_check_end

{

// check whether the player did win

if (scr_check_player_win())

{

score_player += 1;

sound_play(snd_win);

screen_redraw();

sleep(1000);

show_message('YOU WIN');

scr_field_init();

}

// check whether the computer did win

if (scr_check_computer_win())

{

score_computer += 1;

sound_play(snd_lose);

screen_redraw();

sleep(1000);

show_message('YOU LOSE');

scr_field_init();

}

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE252

6153CH13.qxd 3/20/06 2:06 PM Page 252

// check whether there is a draw

if (scr_check_draw())

{

score_draw += 1;

sound_play(snd_draw);

screen_redraw();

sleep(1000);

show_message("IT'S A DRAW");

scr_field_init();

}

}

We must call this script after each move by either the player or the computer.
But we still need to give the computer the power to make a move. Let’s create a very sim-

ple mechanism here; in the next section we’ll create a much more intelligent opponent. Our
simple mechanism makes a random move. We do this as follows. We select a random cell, test
whether it is empty, and if so, place the stone there. If the selected cell is not empty, we repeat
the search until we find one that is. Finding a random position works like this—we use the
function random(3) to obtain a random real number below 3. Using the floor() function, we
round this down, obtaining 0, 1, or 2. The script is shown in Listing 13-9.

Listing 13-9. The Script scr_find_move

{

var i,j;

while (true)

{

i = floor(random(3));

j = floor(random(3));

if (field[i,j] == 0)

{

field[i,j] = 2;

exit;

}

}

}

This script makes use of a while loop to find a random free cell. while(true) can be dan-
gerous, because as the expression is always true, the loop never exits by itself. In this case,
however, we are exiting in our own code as soon as an empty cell is detected, so it is safe as
long as an empty cell exists. If there are no empty cells, we already know it is a draw, so we
need not worry about that case.

We are going to use this script in an updated version of the script scr_field_click, which
we created earlier. When the player has made a valid move, there are three things we must do.
First, we check whether the player won or whether there is a draw, in which case the field is
initialized again, ready for the next game. Next, we let the computer make a move. Finally, we
check whether the computer won or whether there is a draw.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 253

6153CH13.qxd 3/20/06 2:06 PM Page 253

We adapt the scr_field_click script by adding a few lines, as shown in Listing 13-10.

Listing 13-10. The Adapted Script scr_field_click

{

var i,j;

// find the position that is clicked

i = floor((mouse_x-208)/140);

j = floor((mouse_y-32)/140);

// check whether it exists and is empty

if (i<0 || i>2 || j<0 || j>2) exit;

if (field[i,j] != 0) exit;

// set the stone

field[i,j] = 1;

sound_play(snd_place);

scr_check_end();

// let the computer make a move

scr_find_move();

scr_check_end();

}

Once you have added the new scripts and made the change to scr_field_click, test
the game, and you should find it is now fully operational. You can find it in the file Games/
Chapter13/tic_tac_toe2.gm6 on the CD.

The game as it stands is fine, but it is extremely easy to win as the computer plays random
moves. In the next section, we will make the computer a bit more intelligent.

A Clever Computer Opponent
To be able to make a clever computer opponent we must first be clever ourselves. How would
you play the game? What would your strategy be? If you have played the game often, here is a
strategy you might come up with:

• If there is a move available that will make you win, then play it.

• If there is no winning move available for you, but there is one available for the oppo-
nent, you’d better play that move to block them; otherwise you will lose.

• If neither is the case but the center cell is free, then play the center.

• If none of the above is true, play a random move.

This is not the best strategy possible but it is pretty good, and still leaves the player with
a chance to win, so let’s implement it. To give the game a bit more variation, we will program
the computer opponent to only do the third step half the times it is presented. We are going to
create four scripts, one for each of the four cases. The last one we already have—all we have
to do is rename it from scr_find_move to scr_find_random. The other scripts still have to be
constructed.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE254

6153CH13.qxd 3/20/06 2:06 PM Page 254

We will start with the script that tests for the existence of a winning move for the com-
puter. If such a move exists, it is made, and true is returned. Otherwise false is returned.
The script works as follows—we consider every empty cell. We place a stone there and test
whether we won. If so, we return true. If not, we make the cell empty again and proceed with
the next empty cell. The script is shown in Listing 13-11.

Listing 13-11. The Script scr_find_win, Which Tries to Find a Winning Move

{

var i,j;

for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)

if (field[i,j] == 0)

{

field[i,j] = 2;

if scr_check_computer_win() return true;

field[i,j] = 0;

}

return false;

}

The next script tries to find a potential winning move for the human player. If such a posi-
tion exists, the computer places a stone there. It largely works the same, except that we are
testing for a potential row of three human player stones, not three computer player stones.
The cell is then given a value of 2 to place a computer stone there, to block the human player’s
winning move, as shown in Listing 13-12.

Listing 13-12. The Script scr_find_lose, Which Tries to Block a Winning Move of the Player

{

var i,j;

for (i=0; i<=2; i+=1)

for (j=0; j<=2; j+=1)

if (field[i,j] == 0)

{

field[i,j] = 1;

if scr_check_player_win()

{ field[i,j] = 2; return true; }

field[i,j] = 0;

}

return false;

}

Finally, we need the script that tries the center position (Listing 13-13.) It will only try it
once out of every two times.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 255

6153CH13.qxd 3/20/06 2:06 PM Page 255

Listing 13-13. The Script scr_find_center, Which Tries to Place a Stone in the Center

{

if (random(2) < 1 && field[1,1] == 0)

{ field[1,1] = 2; return true; }

return false;

}

With all these scripts in place, we have to remake the script scr_find_move that deter-
mines the next move of the computer. This script calls the four scripts in order and, whenever
one succeeds, it stops further processing because the opponent has made a move. This script
appears in Listing 13-14.

Listing 13-14. The New Script scr_find_move

{

if scr_find_win() exit;

if scr_find_lose() exit;

if scr_find_center() exit;

scr_find_random();

}

That’s the whole game. You can find this finished version in the file Games/Chapter13/
tic_tac_toe3.gm6 on the CD. It will be quite a bit harder to beat this opponent, and if you are
not very good at the game you will most likely lose a few times! In particular, the game might
be too difficult for young children. In the next section, we will see how we can automatically
adapt the game to the level of the player.

Adaptive Gameplay
When the player is good, we should confront him with a strong computer opponent. But when
the player is a novice, the computer opponent should be weaker. Many games achieve this by
letting the user manually select the level of the game (for example, easy, normal, or hard). But
it can be more desirable when the game automatically adapts to the level of the player. For our
game this can easily be achieved—we maintain the score of the player and the computer, so
we know who is winning. When the player is winning a lot, we can make the computer play
better, and when the player is losing a lot, we can make the computer play down its abilities.

As an indication of how good the player is, we use (score_player+1) / (score_computer+1).
The reason for adding 1 to both values is that we do not want to divide by 0, as this would
cause an error. When this value is larger than 1, the player is better than the computer. When it
is smaller than 1, the computer is better. In the scr_find_move script where we decide on the
computer move, we will also compute this value, and based on the result, we decide which
moves we check. When the value is larger than 1.2, we try all moves. When it is smaller than
0.5, we only do a random move. We add in the other two moves as the value increases. The
updated version of scr_find_move is shown in Listing 13-15.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE256

6153CH13.qxd 3/20/06 2:06 PM Page 256

Listing 13-15. Further Adapting the Script scr_find_move

{

var level;

level = (score_player+1) / (score_computer+1);

if (level > 0.5)

{ if scr_find_win() exit; }

if (level > 0.8)

{ if scr_find_lose() exit; }

if (level > 1.2)

{ if scr_find_center() exit; }

scr_find_random();

}

You should now let a number of people play the game and see whether the game indeed
adapts to their level of play. You might want to vary the numbers in the script to make the
game easier or harder for the players.

Congratulations
You have just created your first intelligent computer opponent. Also, you have created some
adaptive gameplay, something that is very important for good games. You will find the last
version of the game in the file Games/Chapter13/tic_tac_toe4.gm6 on the CD.

You might want to extend the game even further. First, you can think a bit more about the
strategy. A very good move in the game is a move where you create two winning positions for
yourself in the next move. As the opponent can only play one of the two, you are then assured
of winning the game in the next move. You might want to add this to the strategy. Another
thing you could do is add a two-player mode in which two people can play against each other.
This is relatively easy, as there is no need for an intelligent computer opponent anymore—
here you only need to remember and indicate who is to play in each move.

The registered version of Game Maker makes available functions that make it possible to
play such a game over a network with two computers, but that is something really advanced.

In this chapter you saw how useful GML code is—we put everything in scripts. In fact, a
game like this would have been almost impossible to create without GML. And it wasn’t really
all that much work. Once you get accustomed to using GML code, you will probably start
using actions much less.

Intelligent opponents make games more interesting. In this chapter we had just one intel-
ligent opponent. In the next chapter, we will create a whole collection of intelligent enemies.

CHAPTER 13 ■ CLEVER COMPUTERS: PLAYING T IC-TAC-TOE 257

6153CH13.qxd 3/20/06 2:06 PM Page 257

6153CH13.qxd 3/20/06 2:06 PM Page 258

Intelligent Behavior: Animating
the Dead

An interesting and challenging game must involve tricky opponents that require clever
thinking or quick reactions to defeat. Up to now, the enemies in our games behaved rather
stupidly—they were just following predefined rules or attacking randomly. In this chapter we
will make the enemies a bit more intelligent, but care must be taken that we do not make
them too clever—we still want the player to be able to win the game.

To facilitate this, we’ll introduce some artificial intelligence (AI) techniques in this
chapter—this term will probably conjure up images of powerful intelligent robot or cyborg
opponents, the likes of which are seen in futuristic movies. This may sound like a complicated
topic, but don’t worry—the techniques we’ll examine are actually rather easy to implement in
Game Maker.

Designing the Game: Pyramid Panic
The game we’re going to create in this chapter is called Pyramid Panic. It is a maze game, like
the Koalabr8 game we created in Chapter 7, but the gameplay will be rather different. Here
is the story:

You play an explorer (see Figure 14-1) who has become trapped while investigating a large
pyramid complex. All around lie the treasures of an ancient pharaoh, but pyramids are haz-
ardous places and danger lurks around every corner. Deadly scorpions and beetles will block
your progress and mummies will hunt you down. Only by keeping your wits about you can you
hope to unravel the secrets of the great pyramid and escape as a rich man.

You control the explorer using the arrow keys. Many obstacles will block your path, keeping
you from taking the treasures and eventually escaping to freedom. Beetles will only move verti-
cally while scorpions only move horizontally. Mummies move in all directions. These enemies
are clever and will react when they see you by trying to catch you and end your explorations.
Some wall segments can be pushed, allowing you to reach other areas or hide from enemies.
The pyramid also contains scarabs that you can use to make the mummies temporarily
vulnerable—allowing you to hunt them for extra points.

259

C H A P T E R 1 4

6153CH14.qxd 3/23/06 7:02 PM Page 259

Deep within the center of the pyramid lies its greatest treasure, the fabled sword of the sun
god Ra. It is this great treasure that casts the unnatural light which reaches throughout the
pyramid and allows you to see your way so clearly. It is precious beyond measure, but in taking
it you will upset that delicate system and the pyramid will be plunged into eerie darkness.
Only the small glow remaining in the sword will light your way now, and formerly simple
puzzles will seem new and challenging. All is not lost, however, for the sword has a second func-
tion. When wielding the sword you will be able to press and hold the spacebar to temporarily
reactivate its glow. The sword transmutes gold into pure light, lighting your way but reducing
your score. When the sword is active, the mummies will flee as they do when a scarab is active,
making your journey easier, but draining your wealth.

The basic ingredients of the game are similar to the maze game in Chapter 7, but there is
a big difference. We are including enemies that are clever and will react when they see you,
which makes the game a lot more interesting to play. All the resources can be found in the
Resources/Chapter14 folder on the CD.

Figure 14-1. Our intrepid explorer is chasing mummies.

The Basic Framework
Let’s start by creating the basic game framework. This will work in largely the same way as
described earlier in Chapters 6 and 7, so we’ll only briefly outline it here. If you want to
immediately go to the next section, you can load the file Games/Chapter14/pyramid1.gm6
from the CD.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD260

6153CH14.qxd 3/23/06 7:02 PM Page 260

Creating the front-end:

1. Open Game Maker and start a new game using the File menu.

2. Create sprites using the following files from the Resources/Chapter14 folder on the CD:
Title.gif, Button_start.gif, Button_load.gif, Button_help.gif, Button_scores.gif,
and Button_quit.gif.

3. Create two backgrounds using the files Background1.gif and Background2.gif.

4. Create sounds using the files Music.mp3 and Click.wav.

5. Create a title object using the title sprite. Add an Other, Game Start event and include
an action to play the music (with Loop set to true).

6. Add a Create event. Include a Set Score action and set the score to 0. Also include a Set
Lives action and set the number of lives to 3. Finally, include the Score Caption action
and indicate that the score must not be shown.

7. Create a start button object using the start sprite. Add a Left Pressed mouse event and
include an action to play the click sound followed by an action to move to the next
room. Add Key Press events for the <Space> key and the <Enter> key, with the same
actions.

8. Create a load button object using the load sprite. Add a Left Pressed mouse event and
include an action to play the click sound followed by a Load Game action.

9. Create a help button object using the help sprite. Add a Left Pressed mouse event and
include an action to play the click sound followed by a Show Info action.

10. Create a scores button object using the scores sprite. Add a Left Pressed mouse event
and include an action to play the click sound followed by a Show Highscore action.
Use the second background as an image for the high-score list and choose some nice
font and colors.

11. Create a quit button object using the quit sprite. Add a Left Pressed mouse event and
include an action to play the click sound followed by an End Game action. Also add a
Key Press, Others, <Escape> event, with the same actions in it.

12. Create a front-end room using the first background, and place the title and five button
objects in it.

Now follow the next instructions to create the completion screen. Refer to Chapter 6 for a
more detailed explanation.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 261

6153CH14.qxd 3/23/06 7:02 PM Page 261

Creating the completion screen:

1. Create a sprite using the file Congratulation.gif.

2. Create a new object using this sprite. Add a Create event and include a Set Alarm
action to set Alarm0 using 60 steps. Also include a Set Score action and set the score
to score * 2. This gives the player an incentive to escape the pyramid alive.

3. Add an Alarm0 event and include the Show Highscore action. Use the same settings as
before. Next, include a Different Room action to move to the front-end room.

4. Create a completion room using the second background and place an instance of the
congratulation object in it.

We also need to create the game information and change some of the Game Maker’s
default settings for the game.

Changing the game settings:

1. Double-click on Game Information, near the bottom of the resource list, and create a
short help text based on the game’s description earlier.

2. Double-click on Global Game Settings at the bottom of the resource list.

3. Select the other tab and disable the option Let <Esc> end the game, as we’ll handle
this ourselves.

The next step is to create a controller object for the game. This controller object will have
a number of functions. First, it provides the option to return to the front-end screen. Second,
it handles the ending of the game when all lives are lost. Finally, later in the chapter, it will dis-
play a panel at the bottom of the room with the number of lives left and the score.

Creating the controller object:

1. Create a new object and name it obj_controller. It does not need a sprite. Add a Key
Press, Others, <Escape> event, and include the Different Room action to move to the
front-end room.

2. Add the Other, No More Lives event. Within it, include a Sleep action, setting the num-
ber of milliseconds to 1000. Next include a Display Message action with the message
“YOU LOST ALL YOUR LIVES!”, or something similar.

3. Still in the No More Lives event, include the Show Highscore action with the same set-
tings as you used in the completion screen. Finally, include the Different Room action
to move to the front-end room.

To test what we have so far, we will add a room between the front-end room and the com-
pletion room, to act as the game level.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD262

6153CH14.qxd 3/23/06 7:02 PM Page 262

Creating a basic room:

1. Right-click on the completion room in the resource list. From the pop-up menu, select
Insert Room.

2. Select the backgrounds tab and in the middle select the second background.

3. Select the settings tab to give the room an appropriate caption and call the room
room_pyramid.

4. Select the objects tab and place one instance of the controller object at the top left of
the room.

That completes our basic game framework for Pyramid Panic, which can also be found in
the file Games/Chapter14/pyramid1.gm6 on the CD. Give it a little test to see that it works cor-
rectly. Note that the only way to stop the game is to press the Esc key—this returns you to the
front-end room.

Creating the Maze and the Explorer
Our next goal is to create the basic maze. Again, this is similar to what we did in Chapter 7, but
this time we will use Execute Code actions in many places instead of actions. Let’s start by
creating two wall objects. We’ll use two different ones to give some variation, but we’ll ensure
that they behave the same in the game by making the first wall the parent of the second wall.

Creating the wall objects:

1. Create two sprites using the files Wall1.gif and Wall2.gif. Make sure that both sprites
are not transparent.

2. Create a new object for the first wall and name it obj_wall1. Give it the first wall sprite
and enable the Solid option.

3. Create a new object for the second wall and name it obj_wall2. Give it the second wall
sprite, enable the Solid option, and set Parent to the first wall object.

Next we need to create the hero of our game—the explorer. We use four different ani-
mated sprites for this. To make sure that the explorer stays correctly aligned with the cells,
we’ll disable precise collision checking and actually increase the bounding box for the sprites.
As a result, Game Maker will act as if the sprites have a size of 32✕32.

Creating the explorer sprites:

1. Create a sprite using the file Explorer_left.gif. This is an animated sprite. Give it the
name spr_explorer_left.

2. Disable the option Precise collision checking, and select the Full image option found
under Bounding Box. Since the sprite is 32✕32, this will make the collision act on a
32✕32 box.

3. In the same way, create the three other sprites using the files Explorer_right.gif,
Explorer_up.gif, and Explorer_down.gif.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 263

6153CH14.qxd 3/23/06 7:02 PM Page 263

The explorer object must pick the correct sprite depending on its direction of motion.
This time, rather than using actions we’ll do all the motion using code. When the explorer
reaches the area outside the room, he has escaped the pyramid and we can move to the
completion screen.

Creating the explorer object:

1. Create a new object for the explorer and name it obj_explorer. Give it the downward
moving explorer sprite.

2. Add a Create event, and in it, include the Execute Code action (control tab). Type in
the following piece of code:

{

image_speed = 0;

}

The image_speed variable we use here stores the speed with which the animation is
played. When the explorer is standing still, this is set to 0.

3. Add a Collision event with the first wall object and include the Execute Code action
within it. Here we must stop the motion and set the animation speed to 0. For this, we
use the following piece of code:

{

speed = 0;

image_speed = 0;

}

4. Add a Keyboard, <Left> event and again include an Execute Code action using the
following piece of code:

{

if (!place_snapped(32,32)) exit;

speed = 4;

direction = 180;

sprite_index = spr_explorer_left;

image_speed = 0.25;

}

In the first line of this code we call the function place_snapped(), which tests whether
the instance is aligned with the grid. If this is not the case (remember that the ! sign
means not), we exit the piece of code; otherwise we set the speed and direction. The
variable sprite_index indicates the sprite that is used, and we set it to the left-facing
explorer sprite. Finally, we set the animation speed to 0.25. We use a small value to
make sure that the animation looks more realistic and that it doesn’t go too fast.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD264

6153CH14.qxd 3/23/06 7:02 PM Page 264

5. Add similar events for the <Right>, <Up>, and <Down> keys. The directions for these
events should be 0, 90, and 270, and you should be sure to choose the correct sprite
for each.

6. Add a Keyboard, <no key> event. If aligned with the grid we must stop the motion
here. So include an Execute Code action with the following piece of code:

{

if (!place_snapped(32,32)) exit;

speed = 0;

image_speed = 0;

}

7. Add the Other, Outside Room event and include the Next Room action.

For the time being, this concludes the description of the explorer object. At first, using
code may seem harder than using actions, but when you get used to the way code is struc-
tured, you will find it faster, because you can more easily change it. It is now time to test the
explorer’s movement and his interaction with the walls.

Adapting the room:

1. Open room_pyramid by double-clicking on it in the resource list.

2. In the toolbar, set Snap X and Snap Y to 32, as our maze cells are 32✕32.

3. Using the first wall object, create a maze in the room. (Be careful not to remove the
controller object.) Make sure there is one exit to the outside. In some places, place an
instance of the second wall object instead, to give the walls some variation.

4. Add one instance of the explorer in the room.

Now test the room to make sure the explorer’s motion around the maze is working cor-
rectly. Once you reach the outside, you should be moved to the completion room. This version
of the game can also be found in the file Games/Chapter14/pyramid2.gm6 on the CD.

Expanding Our Horizons
One of the main features of our game is exploration. In most of our previous games we have
extended the game by adding extra levels, but for this game we’ll do something a little differ-
ent. Expanding on our use of views in Chapter 10, we’ll create the whole pyramid as one huge
level. This will provide our intrepid explorer with a worthy challenge, and give you plenty of
space in which to devise cunning tricks and traps.

For this game we need a single view that shows the explorer and the pyramid. The view
will scroll around the pyramid following the explorer. If any of this doesn’t make sense, be sure
to go back to Chapter 10 where there is a much more detailed explanation.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 265

6153CH14.qxd 3/23/06 7:02 PM Page 265

Creating the view:

1. Open room_pyramid and select the settings tab. Change the Width to 1920 and the
Height to 2400. This will be plenty big enough for our pyramid, but you can feel free
to make it bigger later on.

2. Select the views tab. First enable the option Enable the use of views.

3. Select View 0 in the list. Enable the option Visible when room starts.

4. Under View in room keep the default values: X: 0, Y: 0, W: 640, H: 480. Note that the
view is shown in the room.

5. Under Port on screen also keep the default values: X: 0, Y: 0, W: 640, H: 480.

6. Under Object Following click the menu icon and select obj_explorer. Set Hbor to 300
and Vbor to 220. This will keep the explorer nicely centered in the view.

7. Now you can extend your maze to fill the whole room. There’s not much to do yet, but
don’t worry—we’ll fix that soon.

It’s probably best to try out your game now to check that the view works. As you move
around the maze, the view should scroll so that the explorer is always in view. Our next step is
to adapt the controller object to draw a status panel with information about the number of
lives and the score.

Extending the controller object:

1. Create two sprites using the files Panel.gif and Lives.gif. Make sure that the panel
sprite is not transparent.

2. Create a font that will be used for the score. We used a size 14 bold Arial font.

3. Reopen the properties form for the controller object. Set the Depth to -100 to make
sure it lies in front of all other objects.

4. Add a Draw event. We need to make sure the panel is drawn in the correct position in
the view. To this end, we first move the controller object to the correct position. As
explained in Chapter 10, we can use the variables view_xview[0] and view_yview[0]
for this. Include a Jump to Position action and set X to view_xview[0] and Y to
view_yview[0]+448.

5. Include the Draw Sprite action with Sprite set to the panel sprite, X set to 0, Y set to 0,
and the Relative option enabled. Also include the Draw Life Images action, with
Image set to the lives sprite, X set to 80, Y set to 2, and the Relative option enabled.

6. Include a Set Font action and select the score font. Set Align to right. Also include a
Set Color action and choose a nice yellow for the color. Finally, include the Draw Score
action with X set to 585, Y set to 5, the Caption set to the empty string, and the Relative
option enabled.

That’s it for the view. Start up the game and check that the panel is drawn correctly. This
version of the game can also be found in the file Games/Chapter14/pyramid3.gm6 on the CD.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD266

6153CH14.qxd 3/23/06 7:02 PM Page 266

Reactive Behavior
It is now time to start dealing with the topic of this chapter: behavior. We want our pyramid to
be inhabited with creatures that our explorer needs to avoid. We’ll create a number of different
enemies; the first ones will be rather stupid, and will be controlled by some simple reactive
behavior. Later, enemies will use rules that guide their behavior, and the cleverest enemies
will have different states, depending on the current situation.

Reactive behavior is the simplest kind of behavior you can think of. The entity reacts to
different events. Actually, this is what we have been doing throughout the book—we have
created objects and indicated their reactions to events. You could say that Game Maker is
completely based on the idea of reactive behavior. However, this is the first time we have
studied the concept in depth, and it does warrant a good deal of discussion when trying to
program better games.

Here we will create a beetle enemy that simply moves up and down. It will react to two
different events: when it hits a block it will change its direction of motion, and when the
explorer is in front of it, it will move toward the player and double its speed of motion. This
gives the impression that the beetle notices the explorer and runs to try to catch him, making
the game more interesting to play. We’ll also create a scorpion that operates in the same fash-
ion, but instead moves left and right.

Before we do this let’s create a dummy object called obj_enemy. This object will be the
parent of all the enemy objects; this makes it possible to define one collision event for
the explorer that deals with all different enemies. We’ll also use it to destroy the enemy—our
explorer doesn’t always go down without a fight! It is a good habit to divide your objects into
subgroups and make them share a parent object for common behavior.

Creating the basic enemy object:

1. Create a sound from the file Die.wav and call it snd_die.

2. Create an object and call it obj_enemy. It does not need a sprite.

3. Reopen the properties form for the explorer object, and add a Collision event with
obj_enemy. Include the Execute Code action. Here we’ll play the dying sound, reduce
the number of lives, redraw the screen, sleep a while, and then set the explorer back to
his start position and destroy the enemy:

{

sound_play(snd_die);

lives -= 1;

screen_redraw();

sleep(1000);

x = xstart;

y = ystart;

move_snap(32,32);

with(other)

{

instance_destroy();

}

}

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 267

6153CH14.qxd 3/23/06 7:02 PM Page 267

Note the use of the with statement. As explained in Chapter 11, with this statement we
can execute code as if it were being run on another object. Later in the chapter we will also
see how with can be used to act on whole groups of objects in the same way.

With the basic enemy defined we’ll now create the beetle object.

Creating the beetle object:

1. Create two sprites using the files Beetle_up.gif and Beetle_down.gif, and give them
the names spr_beetle_up and spr_beetle_down, respectively. In both cases, disable the
option Precise collision checking, and select the Full image option found under
Bounding Box.

2. Create an object and call it obj_beetle. Give it the spr_beetle_down sprite, and indicate
obj_enemy as its Parent.

3. Add a Create event and include the Move Fixed action. Indicate a downward direction
and a Speed of 2.

4. Add a Collision event with obj_wall1 and include a Reverse Vertical action.

5. Add the Step, End Step event. Include an Execute Code action with the following code,
which adapts the sprite to the direction of motion:

{

if (vspeed > 0)

sprite_index = spr_beetle_down

else

sprite_index = spr_beetle_up;

}

Now if you add some beetles to a room, you will notice that they nicely move up and
down, and that the explorer dies when he touches one of them. But this is not very intelligent
beetle behavior. We’ll now add a piece of code that makes the beetle react to the presence of
the explorer. If the explorer is on the same row of the maze as the beetle and in front of it, the
beetle will speed up and run toward him.

Making the beetle object more intelligent:

1. Add the Step, Step event, then include an Execute Code action containing the follow-
ing code:

{

speed = 2;

if (x == obj_explorer.x)

{

if ((direction == 90) && (y > obj_explorer.y))

{

speed = 4;

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD268

6153CH14.qxd 3/23/06 7:02 PM Page 268

}

else if ((direction == 270) && (y < obj_explorer.y))

{

speed = 4;

}

}

}

You should now create a scorpion object that acts in exactly the same way as the beetles,
only it moves horizontally, not vertically.

Creating the scorpion object:

1. Create two sprites using the files Scorpion_left.gif and Scorpion_right.gif, and give
them the names spr_scorpion_left and spr_scorpion_right, respectively. In both
cases, disable the option Precise collision checking, and select the Full image option
found under Bounding Box.

2. Create an object and call it obj_scorpion. Give it the spr_scorpion_right sprite, and
indicate obj_enemy as its Parent.

3. Define the behavior of the scorpion object using the same events and similar actions
and code as for the beetle object.

You can stop and try your game out now if you like, but I think it’s worth waiting until
we’ve put some treasure in before we do that—after all, who wants to dodge all of those deadly
monsters without some sort of reward!

Time for Treasure!
Now it’s time to add some treasure to the room for the explorer to discover. There will be two
different treasure types: the first one will occur many times in the maze, and each piece of this
treasure will give the player 10 points. The second treasure type is rarer but much more valu-
able when collected. You can place it at difficult locations in the room to give the player a real
challenge to aim toward.

Creating the treasure objects:

1. Create two sprites using the files Treasure1.gif and Treasure2.gif. For each of them,
disable the Precise collision checking option and select the Full image option found
under Bounding Box.

2. Create a sound using the Treasure.wav file and call it snd_treasure.

3. Create an object for the first treasure and assign the first sprite to it. Give it a Depth of
10 to make sure that enemies appear over it.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 269

6153CH14.qxd 3/23/06 7:02 PM Page 269

4. Add a Collision event with the explorer object, and include an Execute Code action
within it with the following code that increases the score, destroys the treasure, and
plays the treasure sound:

{

score += 10;

instance_destroy();

sound_play(snd_treasure);

}

5. Create an object for the second treasure, assign the second sprite to it, and give it a
Depth of 10. Add a Collision event with the explorer, and include an Execute Code
action containing the preceding code, except that this time the score increment must
be 100 rather than 10.

You should now enhance your level to include some treasure for the explorer to discover
and some enemies to guard it. Test your game and see how the beetles and scorpions add to
the challenge.

Movable Blocks
To create more interesting challenges, we’ll introduce two special blocks that can be pushed
by the player. One type of block can only be pushed horizontally, while the other type can only
be pushed vertically. Only the explorer will be able to push the blocks. These will be magical
blocks, which will return to their original position when the explorer stops pushing them. The
original position of each block can easily be determined, as it is always available in the vari-
ables xstart and ystart. Then by checking the current position compared to its start position,
we can determine which direction the block must move to get back to its original position. We
will do this in the End Step event to make sure it happens after all other events have been
processed.

Creating the block objects:

1. Create a sprite using the file Block_hor.gif, and disable the Transparent option.

2. Create a sound from the file Block.wav and call it snd_block.

3. Create an object for the horizontal block and give it the above sprite. Enable the Solid
option, and indicate the first wall object as the Parent, as the block should behave a lot
like a wall.

4. Add the Step, End Step event. Include an Execute Code action and type in the follow-
ing piece of code, which moves the block instance back toward its start position and
plays the sound:

{

if ((x < xstart) && place_empty(x+2,y))

{

x += 2 ;

sound_play(snd_block);

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD270

6153CH14.qxd 3/23/06 7:02 PM Page 270

}

if ((x > xstart) && place_empty(x-2,y))

{

x -= 2;

sound_play(snd_block);

}

}

5. Reopen the properties form for the explorer object and add a Collision event with the
horizontal block. Include the Execute Code action, and indicate the Other object at
the top under Applies To, as we want to move the block. Now type the following code—
in it we first check whether the explorer has moved horizontally. If he has, we check
whether we can move the block the same amount.

{

if (obj_explorer.hspeed == 0) exit;

if (place_empty(x+obj_explorer.hspeed,y))

{

x += obj_explorer.hspeed;

sound_play(snd_block);

}

}

6. Repeat the previous steps to create the vertical moving block. Create the sprite and the
object and include similar pieces of code, this time moving vertically.

■Note You might have wondered why we defined the collision event in the explorer object and not in the
moving block object. The reason is that we want to replace the default collision behavior with the first wall.
Otherwise, the explorer would stop moving.

Now let’s test our blocks—add some horizontal and vertical moving blocks to your room.
Make sure there is space next to the blocks so that they can be moved. With some careful level
design, you can now create one-way doors to add to the maze’s challenge, as well as other
clever puzzles. The current version of the game can be found in the file Games/Chapter14/
pyramid4.gm6 on the CD. Be sure to come back soon, though—we’re just about to introduce
the big bad guys and you won’t want to miss it!

Rule-Based Behavior
To make our ultimate AI opponent, we are going to want some pretty complicated behavior.
A convenient way of defining behavior is to use rules. Thinking in terms of rules helps you to
clearly describe how entities must behave. A rule indicates that if certain conditions are met,
certain actions must be taken. So a rule has the form

conditions ➤ actions

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 271

6153CH14.qxd 3/23/06 7:02 PM Page 271

Although you may not have realized it at the time, we have already used a rule in the pre-
vious section. We indicated that if the x-coordinates of the beetle and the explorer are equal,
the beetle must move fast toward the explorer:

x-coordinates equal and facing explorer ➤ move fast toward explorer

There even was a second, default rule that said that if the x-coordinates of the beetle and
the explorer were not equal, or the beetle was facing the other way, then the beetle should
move with a slower speed. Also, the collision with a wall can be formulated as a rule. So in
total there were three rules:

x-coordinates equal and facing explorer ➤ move fast toward explorer

x-coordinates not equal or facing away ➤ move slowly

collision with wall ➤ reverse vertical direction away from the wall

The first two rules are exclusive, that is, they can never both be true. But the third can be
true at the same time as one of the other two. In such a situation, it is important to decide
what should happen. Should both actions be executed, or just one, and if so, which one? Does
one rule have priority over another, or should a random one be picked? In our previous exam-
ple the third rule should definitely have priority over the other rules, as the beetle should
never be allowed to move into a wall.

Creating rule-based behavior consists of defining a set of rules and indicating what
should happen when multiple rules are valid. A rule consists of one or more conditions and
the actions that must be followed in the case the conditions are true. Typical conditions that
are often used in games are as follows:

• Is a position or direction collision-free?

• Is the enemy near to the player?

• Is the player in a particular direction relative to the enemy?

• Can the enemy see the player?

• Does the enemy or the player carry a particular item?

All these conditions can easily by tested in Game Maker as we’ll see in a moment; how-
ever, first we need to create the mummy object that can use these conditions to drive its
behavior.

Creating the mummy object:

1. Create four sprites using the files Mummy_left.gif, Mummy_right.gif, Mummy_up.gif, and
Mummy_down.gif. Name them spr_mummy_left, spr_mummy_right, spr_mummy_up, and
spr_mummy_down.

2. For each of the sprites, disable the Precise collision checking option, and select the
Full image option under Bounding Box.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD272

6153CH14.qxd 3/23/06 7:02 PM Page 272

3. Create a new object for the mummy and name it obj_mummy. Give it the downward-
moving mummy sprite and indicate obj_enemy as its Parent.

4. Add a Create event and in it include the Move Fixed action. Give it a downward direc-
tion and a Speed of 4.

5. Add the Step, End Step event. Here we’ll set the correct sprite and animation speed.
Include an Execute Code action and type in the following piece of code:

{

image_speed = 1/3;

if (hspeed < 0) sprite_index = spr_mummy_left;

if (hspeed > 0) sprite_index = spr_mummy_right;

if (vspeed < 0) sprite_index = spr_mummy_up;

if (vspeed > 0) sprite_index = spr_mummy_down;

}

As it stands, the mummy will simply walk through the walls, but don’t despair—we’ll give
it better behavior next.

Walking Around
The first behavior we want to define for the mummy is simply walking around through the
level. This is more difficult than it might seem. At each cell there are four possible directions
the mummy can choose. Some might be blocked by walls, and are therefore forbidden. Once
all of the forbidden choices are removed, we must pick one of the available ones. To ensure
natural motion, we’ll make sure that we never go back in the direction we came from, unless
this is the only possible direction to take (when we go into a dead end). For the other direc-
tions, we’ll pick a valid one randomly.

How do we turn this into rules? Let ahead, left, and right indicate whether these three
positions are free. We have the following rules:

not ahead and not left and not right ➤ move back

ahead ➤ move straight ahead

left ➤ turn left

right ➤ turn right

The first rule is exclusive from the others, so if the first rule is valid, all others are not valid.
The other three rules can all be valid at the same moment, and as we mentioned earlier, we
should pick a random valid one.

The next step is to turn this into a GML script (see Listing 14-1). To determine the value of
ahead, left, and right, we’ll use the function place_free, and to make a random choice we’ll
use a similar method to Chapter 13. To make the script easier to understand, we have also split
the code based on whether the mummy is moving horizontally or vertically.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 273

6153CH14.qxd 3/23/06 7:02 PM Page 273

Listing 14-1. The Script scr_behavior_walk

{

var ahead, left, right;

if (!place_snapped(32,32)) exit;

if (vspeed == 0)

{

ahead = place_free(x+hspeed,y);

left = place_free(x,y+4);

right = place_free(x,y-4);

if (!ahead && !left && !right) {direction += 180; exit;}

while (true) // forever

{

if (ahead && random(3)<1) {exit;}

if (left && random(3)<1) {direction = 270; exit;}

if (right && random(3)<1) {direction = 90; exit;}

}

}

else

{

ahead = place_free(x,y+vspeed);

left = place_free(x+4,y);

right = place_free(x-4,y);

if (!ahead && !left && !right) {vspeed = -vspeed; exit;}

while (true) // forever

{

if (ahead && random(3)<1) {exit;}

if (left && random(3)<1) {direction = 0; exit;}

if (right && random(3)<1) {direction = 180; exit;}

}

}

}

Let’s analyze this script in detail. We use three local variables to store values that specify
whether the three possible positions are collision free. We first test whether the mummy is
aligned with the grid. If not, we exit the script, as nothing needs to be done.

Next we distinguish between a horizontal motion (vspeed == 0) and a vertical motion.
We’ll discuss just the horizontal motion here, as the vertical motion is treated in a similar fash-
ion. We first determine the values of the variables ahead, left, and right. Next, we check
whether the first rule is valid. If so, we reverse the direction and exit the code. To pick one of
the other rules randomly, we use a loop that continues forever until a rule is picked. To pick a
rule with a one-in-three chance we check each time whether random(3)<1. This happens on
average one out of three times. So in each execution of the loop we try each rule with a one-in-
three chance and, if it is valid, we execute the rule and exit the code. We can even change the
chances with which rules are picked. For example, we could give a motion straight ahead a
bigger chance by, for example, checking whether random(2)<1. It is essential that we know that
at least one rule is valid; otherwise, the loop would run forever—in our earlier example we
know this won’t be the case.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD274

6153CH14.qxd 3/23/06 7:02 PM Page 274

Note that this time we use a script rather than an Execute Code action. This is because we
want to use this as a function in later code. For the moment we’ll use this script in the Step
event of the mummy object.

Giving the mummy object behavior:

1. Create the script scr_behavior_walk, as indicated earlier.

2. Reopen the properties form of the mummy object.

3. Add the Step, Step event, then include an Execute Script action and indicate the script
scr_behavior_walk.

Place mummies in some of the rooms and test their behavior; the mummies should tra-
verse the maze successfully.

Moving Toward the Explorer
Our second behavior tries to move the mummy toward the explorer. To this end we must
first determine the direction the player is in relation to the mummy. We’ll store this in a local
variable called dir. This direction between two points can be calculated using the function
point_direction(), which gives a value between 0 and 360 degrees. To turn it into one of four
choices, we can divide it by 90, round it to the nearest integer number, and make our decision
based on the resulting value. This will always be 0, 1, 2, or 3. The value 0 means to the right, 1
to the top, 2 to the left, and 3 to the bottom. We can now give the mummy the following rules
to follow:

dir == 0 and can move right ➤ move right

dir == 1 and can move up ➤ move up

dir == 2 and can move left ➤ move left

dir == 3 and can move down ➤ move down

These rules are exclusive. Whether we can actually move in a particular direction depends
on whether that direction is collision free in the first place. Also, we want to avoid the mummy
reversing its direction. If all rules fail, we call the previous behavior. This can all be achieved
using the script in Listing 14-2.

Listing 14-2. The Script scr_behavior_towards

{

if (!place_snapped(32,32)) exit;

// find out in which direction the explorer is located

var dir;

dir = point_direction(x,y,obj_explorer.x,obj_explorer.y);

dir = round(dir/90);

if (dir == 4) dir = 0;

// the four rules that move the mummy in the explorer's direction

if (dir == 0 && direction != 180 && place_free(x+4,y))

{ direction = 0; exit; }

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 275

6153CH14.qxd 3/23/06 7:02 PM Page 275

if (dir == 1 && direction != 270 && place_free(x,y-4))

{ direction = 90; exit; }

if (dir == 2 && direction != 0 && place_free(x-4,y))

{ direction = 180; exit; }

if (dir == 3 && direction != 90 && place_free(x,y+4))

{ direction = 270; exit; }

// otherwise do the normal walking behavior

scr_behavior_walk();

}

Try replacing the behavior of the mummy with this new behavior. You will notice that the
mummy moves toward you rather rapidly, and it is almost impossible to finish the game—we
made the mummy a bit too clever! To make things fairer for the explorer, we should not always
use our intelligent behavior. In particular, we should not do it at all if the explorer is far away.
This can be achieved using the following behavior. We first compute the distance between the
mummy and the player. Then we check whether the mummy can see the player. For this we
check whether the line between the centers of the two instances does not collide with a wall.
We now use the following rules:

if player can be seen ➤ move toward player

if distance is larger than 200 ➤ walk around

otherwise ➤ with one-in-two chance move toward the player, otherwise walk around

These rules are in order of priority, so we’ll execute the first one that is valid. This is
achieved using the script in Listing 14-3.

Listing 14-3. The Script scr_behavior_total

{

if (!place_snapped(32,32)) exit;

// Calculate distance and visibility

var dist,vis;

dist = point_distance(x,y,obj_explorer.x,obj_explorer.y);

vis = !collision_line(x+16,y+16,obj_explorer.x+16,obj_explorer.y+16,

obj_wall1,false,false);

// Execute the rules in order

if (vis) { scr_behavior_towards(); exit; }

if (dist>200) { scr_behavior_walk(); exit; }

if (random(2)<1) { scr_behavior_towards(); exit; }

scr_behavior_walk();

}

To use the new script, make the following changes.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD276

6153CH14.qxd 3/23/06 7:02 PM Page 276

Improving the mummy object behavior:

1. Create the scripts scr_behavior_towards and scr_behavior_total, shown earlier.

2. Reopen the properties form of the mummy object.

3. Select the normal Step event. Select the Execute Script action and change the script to
scr_behavior_total.

Our mummy now displays some interesting behavior. Try putting some mummies in the
pyramid room in interesting configurations, to test out everything we have so far. You can
also try to change the behavior—for example, by changing the maximum distance away that
the mummy can be before it stops reacting to the explorer, or the chance that the mummy
responds when in range. You will find the current version of the game in the file Games/
Chapter14/pyramid5.gm6 on the CD. You might find the game with the mummies is a bit hard
at this point, but don’t worry too much as we’ll modify them next to provide a more realistic
challenge.

Dealing with States
We have so far created some interesting behavior for our pyramid denizens using rules. How-
ever, think about real life; people don’t just behave according to one set of rules—they adapt
their behavior based on the current situation. We could add this type of thing in Game Maker
using rules, but that would make the collection of rules huge and hard to keep consistent.

Instead, it is easier to introduce states. For each situation, a character will choose an
appropriate state. By creating a state for each situation, we can keep the number of rules for
each state small but still create complicated and realistic behavior. When something happens,
a character can change state, which can result in different behavior. To start, we’ll give our
mummy three states: wandering around, searching for the explorer, and chasing the explorer.

State changes can occur when particular events happen, or they can occur according to
rules. For example, the wandering mummy changes into a searching mummy when it gets
close to the explorer. This one in turn becomes a chasing mummy when it can see the
explorer. Such a system, with a finite number of states and events that cause state changes,
is called a finite-state machine. It is common to draw such a finite-state machine as a diagram
in which nodes correspond to the states and arrows correspond to state changes. For our
mummy, such a diagram would look like Figure 14-2.

For each of these states, we can then define behavior. In the wandering state, the mummy
just walks around. In the searching state, the mummy moves toward the explorer from time to
time. Finally, in the chasing state the mummy always moves toward the explorer. We have all
of the basic behaviors for this already. We’ll use the states to control how they are used.

Using states is very simple in Game Maker. We’ll just use a different object for each state.
We’ll keep our mummy object, but we’ll remove the behavior from it, and use it as a parent for
the other mummy objects. Remember that the mummy object still has the enemy object as its
parent, so our new objects will inherit behavior from both. Three objects are then created for
the three different states. In the step event of these objects, we call the correct behavior script.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 277

6153CH14.qxd 3/23/06 7:02 PM Page 277

Figure 14-2. The finite-state machine consists of three states.

The only remaining thing to do is to indicate the state changes. We use the Begin Step
event for this. This event is executed at the beginning of each step, which is a good time to test
whether the state should change. If we do need to change state, we’ll use the instance_change()
function to transform the object into the appropriate type. As well as changing the behavior of
the mummies in each state, we’ll change the speed. This will make the mummies a little easier
to avoid, and after all, mummies just wandering about the pyramid are hardly going to move
at the same speed as the ones who are chasing our explorer!

Creating a different mummy object:

1. Reopen the properties form of the mummy object.

2. Select the normal Step event and click the Delete button to remove it.

3. Create a new object and call it obj_mummy_wander, give it the downward-looking
mummy sprite, and indicate obj_mummy as its Parent.

4. Add the Step, Step event. Include an Execute Script action and indicate the script
scr_behavior_walk.

5. Add the Step, Begin Step event. Here we want to tell the mummy to change into a
searching mummy when we get close to the explorer (the searching mummy must still
be created). Because the searching mummy goes at a slightly faster speed, we also
need to check that our position is snapped to a grid at that new speed (in this case 2).
Without this check, the mummies can get out of alignment with the grid and move
through walls. Include an Execute Code action and type the following code:

{

speed = 1; // wandering mummies go slowly

if (point_distance(x,y,obj_explorer.x,obj_explorer.y) < 200)

{

if (!place_snapped(2,2)) exit;

instance_change(obj_mummy_search,false);

}

}

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD278

6153CH14.qxd 3/23/06 7:02 PM Page 278

6. Create a new object and call it obj_mummy_search, give it the mummy sprite, and indi-
cate obj_mummy as its Parent.

7. Add the Step, Step event. Include a Test Chance action and indicate 2 for the number
of sides. Include an Execute Script action and indicate the script scr_behavior_walk.

8. Next Include an Else action and another Execute Script action, and indicate the script
scr_behavior_towards. This gives us our search behavior as described earlier.

9. Add the Step, Begin Step event. Here we want to change back into a wandering
mummy when we get too far away from the explorer or into a chasing mummy when
we see the explorer. Again we need to check that we are snapped to the grid at the new
speed (although we can ignore this for the wandering mummy as all positions are
snapped to 1 pixel). Include an Execute Code action and type the following code:

{

speed = 2;

if (!collision_line(x+16,y+16,obj_explorer.x+16,obj_explorer.y+16,

obj_wall1,false,false))

{

if (!place_snapped(4,4)) exit;

instance_change(obj_mummy_chase,false);

}

if (point_distance(x,y,obj_explorer.x,obj_explorer.y) > 200)

{

instance_change(obj_mummy_wander,false);

}

}

10. Create a new object and call it obj_mummy_chase, give it the mummy sprite, and indicate
obj_mummy as its Parent.

11. Add the Step, Step event. Include an Execute Script action and indicate the script
scr_behavior_towards.

12. Add the Step, Begin Step event. Here we want to change back into a searching mummy
when we no longer see the explorer. Note that we don’t need to check whether the
place is snapped here because any place that is snapped to 4 is also snapped to 2.
Include an Execute Code action and type the following code:

{

speed = 4; // chasing mummies really shift

if (collision_line(x+16,y+16,obj_explorer.x+16,obj_explorer.y+16,

obj_wall1,false,false))

instance_change(obj_mummy_search,false);

}

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 279

6153CH14.qxd 3/23/06 7:02 PM Page 279

13. Delete the script scr_behavior_total, as we no longer need it.

14. In the pyramid room, replace all the mummy instances with wandering mummy
instances.

Now test the game again. The new mummies should be more realistic, and carefully
sneaking past them should be a fun challenge. You can find this version of the game in the
file Games/Chapter14/pyramid6.gm6 on the CD.

Scarabs
If you add a lot of mummies to your game, it is still pretty difficult to escape the pyramid alive.
To give the explorer a better chance against the mummies, we’re going to introduce a scarab
object. When the explorer uses a scarab, the mummies become temporarily vulnerable and
the explorer can destroy them. To this end we need an additional state for the mummy—the
afraid state. When the mummy is afraid, it will no longer move toward the explorer but will
instead simply wander around. If the player catches a mummy, the mummy will be destroyed
and the player’s score will increase. Our new finite-state machine will now look like Figure 14-3.

Figure 14-3. The extended finite-state diagram contains four states.

To implement this, we add a new mummy object for the afraid state. The afraid mummy
will have the same behavior as the wandering mummy, but its state changes are handled
differently.

Creating the afraid mummy object:

1. Create a new object and call it obj_mummy_afraid, give it the mummy sprite, and indi-
cate obj_mummy as its Parent.

2. Add the Step, Step event. Include an Execute Script action and indicate the script
scr_behavior_walk.

Next we must create the scarab object.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD280

6153CH14.qxd 3/23/06 7:02 PM Page 280

Creating the scarab object:

1. Create a sprite using the file Scarab.gif.

2. Create a new object, call it obj_scarab, give it the scarab sprite, and give it a Depth of
10. It does not need any behavior.

Next we’ll extend the explorer object to deal with scarabs. As well as collecting scarabs,
the explorer needs to be able to use them. For this we’ll create a Key Press, <Shift> event
where we turn all mummies into afraid mummies, and we’ll set up some alarms to turn the
mummies back when the scarab is used up.

Extending the explorer object:

1. We need some sounds for when we activate the scarab power, so create snd_power_start
with the file PowerStart.wav and snd_power_end with the file PowerEnd.wav.

2. Reopen the properties form for the explorer object. Select the Create event and change
the code by setting the variable scarab_count to 0. We’ll use scarab_count to check
how many scarabs the explorer is carrying and whether he can use one to chase the
mummies away. The new code should look like this:

{

image_speed = 0;

scarab_count = 0;

}

3. Add a Collision event with obj_scarab. Include an Execute Code action and add the
following code, which plays a sound, increases the score, and destroys the scarab
object. It also adds 1 to the explorer’s scarab count.

{

sound_play(snd_treasure);

score += 50;

scarab_count += 1;

with (other) instance_destroy();

}

4. Add a Key Pressed, <Shift> event. Include an Execute Code event with the following
code, which sets Alarm0 to 300 (10 seconds) and turns all mummies into afraid mum-
mies. We also set Alarm1 so that we can play the end sound slightly before the timer
ends so the explorer has some warning. But before this is done, the code checks to see
that the explorer has collected a scarab, and if he has, it reduces scarab_count by 1 to
indicate that the scarab has been used.

{

if (scarab_count > 0)

{

with (obj_mummy) instance_change(obj_mummy_afraid,false);

alarm[0] = 300; // scarab timer

alarm[1] = 240; // end of scarab sound timer

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 281

6153CH14.qxd 3/23/06 7:02 PM Page 281

scarab_count -= 1;

sound_play(snd_power_start)

}

}

5. Add the Alarm0 event. Include an Execute Code action with the following code, which
turns all surviving mummies back into wandering mummies:

{

with (obj_mummy) instance_change(obj_mummy_wander,false);

}

6. Add the Alarm1 event. Include a Play Sound action with snd_power_end to play the end
of power sound.

Next we define a collision event between the explorer and the scared mummy. Here we
play a sound, increase the score, and destroy the mummy instance. As this event overrides the
collision event with the basic enemy object, the explorer is not killed in this case.

Handling the collision between the explorer and the scared mummy:

1. Create a sound with the name snd_scared using the file Scared.wav.

2. Reopen the properties form for the explorer object.

3. Add a Collision event with obj_mummy_afraid. Insert an Execute Code action and add
the following code, which plays a sound, increases the score, and destroys the mummy:

{

sound_play(snd_scared);

score += 100;

with (other) instance_destroy();

}

The explorer can now collect and use scarabs, but there is no indication of how many he
has collected. In order to make this clearer to the player, let’s extend our display at the bottom
of the screen to include the explorer’s scarab count.

Extending the score display:

1. Reopen the properties form for obj_controller.

2. At the end of the Draw event add a Draw Sprite action with Sprite set to spr_scarab, X
set to 290, Y set to 1, and the Relative option enabled.

3. Add a Draw Variable action and choose obj_explorer.scarab_count as the variable.
Set X to 340 and Y to 5, and enable the Relative option.

In order to help the player we’ll visually indicate whether or not the mummy is afraid. We
can achieve this by changing the color of the sprite. We’ll actually take this a step further and
also use different colors for the searching and chasing mummy. This will make it clear to the
player when he must be careful.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD282

6153CH14.qxd 3/23/06 7:02 PM Page 282

■Note Changing the sprite color is only possible in the registered version of Game Maker. If you do not
have a registered copy, you must solve this differently—for example, by using a different sprite or by
indicating the status on the panel at the bottom.

Changing the color of the different mummy objects:

1. Reopen the properties form for obj_mummy_afraid, and select the Step event. Include
the Color Sprite action from the main1 panel. Indicate a blue color.

2. Reopen the properties form for obj_mummy_wander, and select the Step event. Include
the Color Sprite action and indicate a white color.

3. Reopen the properties form for obj_mummy_search, and select the Step event. Include
the Color Sprite action and indicate an orange color.

4. Reopen the properties form for obj_mummy_chase, and select the Step event. Include the
Color Sprite action and indicate a red color.

Before we finish this section, we’ve got one more trick up our sleeves. With plenty of
mummies in the game, it’s still pretty hard, so to help the player out let’s add some health
potions to give the player extra lives.

Creating the potion object:

1. Create a sprite spr_potion with the Potion.gif file.

2. Now create an obj_potion object and assign the spr_potion sprite. Give it a Depth of 10
so that enemies move on top of it.

3. Reopen the properties form for the explorer object.

4. Add a Collision event with the obj_potion object and insert the Execute Code action.
In the code window type the following code:

{

lives += 1;

with (other) instance_destroy();

}

Add some scarabs, potions, and some more mummies and test the game thoroughly. If it
seems too hard, you can add extra scarabs or potions. If it is too easy, adding some more
mummies will fix that. Now that the explorer has a way to fight back, you should begin to find
that the game is much more fun to play and that balancing it is much easier. You will find the
current version of the game in the file Games/Chapter14/pyramid7.gm6 on the CD.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 283

6153CH14.qxd 3/23/06 7:02 PM Page 283

Let There Be Light
As the final touch for our game, we’ll be adding a second objective. As well as escaping alive,
our explorer will be searching for the pyramid’s biggest treasure, the Sword of Ra. The Sword of
Ra will be worth a staggering 5,000 points, but it won’t be all positive. Drawing the sword will
switch off all of the lights in the pyramid. The explorer will be able to use the dim light that the
sword still produces to light his way, and it will also scare away the mummies, but every sec-
ond it is activated will drain his score and reduce his eventual wealth.

■Note This section requires a registered version of Game Maker because it uses some features that are
not available in the free version.

To implement this, we need a couple of ingredients. First, we need a way to show only
part of the world. We’ll use a global variable called global.swordon to indicate whether or not
the sword is activated. This will tell us whether our light should light only close to the explorer
or further out. We’ll also extend the controller object to control the light. In its Create event,
we’ll set global.swordon to false to indicate that the sword is not activated. When the player
presses or releases the spacebar, we switch the value from false to true and back. Finally, in the
draw event of the controller we must hide the part of the world that cannot be seen. To make
sure that the panel at the bottom of the screen is unaffected, we’ll do this draw step before
drawing the panel.

To hide part of the room, we use a special form of blending. We add the image in
Figure 14-4 as a background, and then subtract this image from the room image. Normally
images we draw replace the background image. But we can change the blend mode to get
different effects. Don’t forget to set the blend mode back to normal afterward.

Figure 14-4. We subtract this image from the room image.

As this image is black (0) in the center, nothing is subtracted there, but more is subtracted
as you go toward the outside of the image, until the image is completely white on the outside.
At that point everything is subtracted, leaving the area outside the image completely black (we
simply fill this area with black rectangles as nothing can be seen there). You can see the result
in Figure 14-5, which is pretty impressive and results in a creepier feeling.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD284

6153CH14.qxd 3/23/06 7:02 PM Page 284

Figure 14-5. Subtracting the image from the room gives a creepy feeling.

The script in Listing 14-4 achieves this. As arguments, the script gets the location of the
light. Depending on the value of the variable global.swordon, it determines the size of the lit
area. Next, it draws black rectangles about this area. Finally, it sets the blend mode, draws the
light image in the correct size, and sets the blend mode back to normal.

Listing 14-4. The Script scr_light

{

// Only draw if the explorer has found the sword

if (!obj_explorer.has_sword) exit;

// First determine the size of the lit area

var x1,y1,x2,y2,ww;

if (global.swordon) ww = 800 else ww = 300;

x1 = argument0-ww/2;

x2 = argument0+ww/2;

y1 = argument1-ww/2;

y2 = argument1+ww/2;

// Hide things that are far away by drawing black rectangles

draw_set_color(c_black);

draw_rectangle(0,0,x1,room_height,false);

draw_rectangle(x2,0,room_width,room_height,false);

draw_rectangle(0,0,room_width,y1,false);

draw_rectangle(0,y2,room_width,room_height,false);

// Now hide nearby stuff by subtracting the light image

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 285

6153CH14.qxd 3/23/06 7:02 PM Page 285

draw_set_blend_mode(bm_subtract);

draw_background_stretched(back_light,x1,y1,ww,ww);

draw_set_blend_mode(bm_normal);

}

The script must be called at the beginning of the Draw event of the controller object.

Extending the controller object:

1. Create a background resource from the file Light.bmp and name it back_light.

2. Create the script scr_light as described earlier.

3. Reopen the properties form for the controller object.

4. Add the Create event and include the Set Variable action, with Variable set to
global.swordon and Value to false.

5. Select the Draw event. At the start of the list of actions include the Execute Script
action. As Script select scr_light. As Argument0 indicate obj_explorer.x+16, and as
Argument1 indicate obj_explorer.y+16. This will center the light on the explorer.

Next we need to create the sword object.

Creating the sword object:

1. Create a sprite from the file Sword.gif.

2. Create an object using this sprite and call it obj_sword. Set the Depth to 10. No events
or actions are required.

Now we need to edit the explorer object to handle collision with the sword, and to allow
the player to use the sword’s power when it is needed.

Extending the explorer object:

1. Reopen the properties form for the explorer object. In the Create event, open the
Execute Code action and add the line has_sword = false;. This makes sure that the
explorer starts out without the sword.

2. Now add a Collision event with obj_sword. Include the Execute Code action and type
the following code:

{

score += 5000;

sound_play(snd_treasure);

show_message("As you draw the mighty Sword of Ra the lights go out!" +

"##Frighten the mummies, but don't lose your treasures. ");

has_sword = true;

with (other) instance_destroy();

}

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD286

6153CH14.qxd 3/23/06 7:02 PM Page 286

This is very similar to the Collision events with the other types of treasure, but we also
set the variable has_sword to true and show a message. Showing a message like this
helps to indicate to the player that something really special has happened and makes
the player feel a real sense of achievement.

3. Add the Keyboard, <Space> event, and include the Execute Code action. Add the
following code:

{

if (has_sword && (score > 0))

{

global.swordon = true;

with (obj_mummy) instance_change(obj_mummy_afraid,false);

score -= 10;

}

}

This checks that the explorer has found the sword, and also that he still has score to
feed it. If both of those things are true, it changes all of the mummies into scared
mummies and subtracts 10 from the score. Because this event happens every step
that the spacebar is held, this subtracts 300 points per second. You’ll soon spend all
5000 points the sword gave you if you’re not careful!

4. Add the Key Release, <Space> event. Include the Execute Code action and type the
following code:

{

if (has_sword)

{

global.swordon = false;

if (alarm[0] <= 0)

{

with (obj_mummy_afraid) instance_change(obj_mummy_wander,false);

}

}

}

This sets global.swordon back to false and turns all of the mummies back to wandering
mummies. Before it does this, though, it double-checks that Alarm0 is not running.
This ensures that it does not turn the mummies back if a scarab is currently in use.

And there you go. Put one instance of the sword object at a special place in the pyramid
room and test that it works. But before we finally wrap this game up, there’s one more
change to make to the mummies. Now that the lights are out, it would be a bit unfair if the
mummies still detected the explorer from the same distance. To change that, let’s check the
obj_explorer.has_sword variable; if it is true we’ll make the distance smaller to reflect the
small amount of light.

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 287

6153CH14.qxd 3/23/06 7:02 PM Page 287

Adapting the behavior of the mummy object:

1. Reopen the properties form for the wandering mummy, select the Begin Step event,
and double-click on the Execute Code action. Now change the code as follows:

{

var maxdist;

if (!obj_explorer.has_sword)

maxdist = 200

else

maxdist = 75;

speed = 1; // wandering mummies go slowly

if (point_distance(x,y,obj_explorer.x,obj_explorer.y) < maxdist)

{

if (!place_snapped(2,2)) exit;

instance_change(obj_mummy_search,false);

}

}

2. Reopen the properties form for the searching mummy, select the Begin Step event,
and double-click on the Execute Code action. Change this code as follows:

{

var maxdist;

if (!obj_explorer.has_sword)

maxdist = 200

else

maxdist = 75;

speed = 2;

if (!collision_line(x+16,y+16,obj_explorer.x+16,obj_explorer.y+16,

obj_wall1,false,false))

{

if (!place_snapped(4,4)) exit;

instance_change(obj_mummy_chase,false);

}

if (point_distance(x,y,obj_explorer.x,obj_explorer.y) > maxdist)

{

instance_change(obj_mummy_wander,false);

}

}

That finishes the changes we must make. You will find the final version of the game in the
file Games/Chapter14/pyramid8.gm6 on the CD. Now you should take some time to complete
your masterpiece. Be sure to get some friends to test out the game for you to ensure that it isn’t
too hard, and have fun—there are a lot of great objects to play with here, so be sure to go wild!

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD288

6153CH14.qxd 3/23/06 7:02 PM Page 288

Looking to the Future
This is the last game project in the book, but it’s just the beginning of your game design career.
Taking this game as a springboard, you could explore lots of directions. Maybe you want to
add a whole set of different pyramids, each with different treasures and devious new traps. Or
perhaps it’s time for our explorer to break free of claustrophobic corridors and step out in a
new direction—plunging deep in the rainforests of the Amazon or perhaps fighting winds
across the icy wastes of Antarctica. You might even feel like adding some totally new game
mechanics to the game—perhaps the explorer has to take to the skies in his trusty biplane,
navigating through deadly desert sandstorms and avoiding terrible swarms of man-eating
locusts on the way to his next target.

The fun doesn’t stop with this game. Using the game design skills you have picked up so
far in this book along with the advice in Chapter 15, you are in the perfect situation to start
designing your own games. Imagine yourself an unlikely dustball hero, create yourself an
unstoppable army of weasels, travel into deep space to play ping-pong with stars—the only
limit is your imagination. Go forth and design—you have nothing to lose but your boredom!

CHAPTER 14 ■ INTELLIGENT BEHAVIOR: ANIMATING THE DEAD 289

6153CH14.qxd 3/23/06 7:02 PM Page 289

6153CH14.qxd 3/23/06 7:02 PM Page 290

Final Words

So that’s it—you’ve made it to the end. You’ve completed all the challenges this book has to
offer and, we hope, learned a lot about creating games in the process. You’ve battled demons,
flown spacecrafts, dodged crates, juggled starfish, rescued koalas, commanded tanks, survived
dogfights, hidden from mummies, and still had time for a game of tic-tac-toe along the way!
We hope you’ve enjoyed this journey. Just because this book has come to an end, it doesn’t
mean that your gaming projects have to. So before we say a final farewell, we’ll quickly men-
tion some other directions you could explore if you want to continue enhancing your game
development skills.

Creating Resources
As we said at the start, you’re free to use the graphics, music, and sound effects provided with
this book for your own Game Maker projects. However, those of you with artistic or musical
talents will eventually want to try making your own resources for your games. In this section,
we’ll briefly mention some of the tools available for doing this. In each case we’ve chosen to
focus on free tools, as you’ll lose nothing from giving them a try before looking elsewhere.

Artwork: The GIMP
The GNU Image Manipulation Program—GIMP for short—is a professional-quality 2D art
package, which is free to download and use on your PC (see Figure 15-1). It has many more
features than the Image Editor in Game Maker and is comparable to Adobe Photoshop—the
main 2D art package used in the games industry (and in this book). It’s not the easiest package
to learn how to use, but if you’re serious about creating game artwork, then the GIMP will
allow you to stretch your artistic talents while learning some professional techniques. Visit
the GIMP website for more information and to download the program to your machine:
http://gimp-win.sourceforge.net.

291

C H A P T E R 1 5

6153CH15.qxd 3/24/06 10:33 AM Page 291

Figure 15-1. This is a screenshot from the GIMP.

While Photoshop and the GIMP are great packages, they can be a bit too much for begin-
ners to handle, particularly when trying to use them to create sprites. HUMANBALANCE Co.’s
GraphicsGale and Cosmigo’s Pro Motion are cheap alternatives that are easier to use and
designed specifically for creating sprites. You can download trial versions of these packages
from the following websites:

• www.humanbalance.net/gale/us (GraphicsGale)

• www.cosmigo.com/promotion/index.php (Pro Motion)

Music: Anvil Studio
Music can add a lot of atmosphere to games as well as being a great deal of fun to create. Wil-
low Software’s Anvil Studio (see Figure 15-2) is a free beginner’s package, which includes loads
of features as well as helpful tips and tutorials to get you on your way. Packages like Anvil are
MIDI based, and allow you to compose MIDI music files that are small in size and easy to
include in your Game Maker games. MIDI music is the computer equivalent of writing down
music on paper and getting the computer to perform the piece of music each time it needs to

CHAPTER 15 ■ FINAL WORDS292

6153CH15.qxd 3/24/06 10:33 AM Page 292

be played. This means that the way it sounds depends on the computer’s sound card, so the
music will often sound different on different computers. You can get around this by recording
a performance of a MIDI song on your computer as a WAV file and including this in your
game. The music will then sound exactly the same on every computer, but the WAV file will be
much larger in size than the original MIDI. You can download Anvil Studio from the following
website: www.anvilstudio.com.

Figure 15-2. This is a screenshot from Anvil Studio.

Although Anvil is a fine place to start with making music, MIDI Tracker (from RF1 Systems)
is a little simpler to use and not expensive to buy online. In fact, most of the MIDI files from
the games in this book were originally composed on MIDI Tracker. Steinberg’s Cubase SE is an
entry-level music production package in the same range as those used in professional game
development. This was the package used to create the MP3 music files included in this book.
However, packages like this require special kinds of sound cards in order to work properly, so
don’t rush out and buy one without reading up on them first.

• www.rf1.net/software/mt (MIDI Tracker)

• www.steinberg.de (Cubase SE)

CHAPTER 15 ■ FINAL WORDS 293

6153CH15.qxd 3/24/06 10:33 AM Page 293

Sound Effects: Audacity
Audacity (see Figure 15-3) is an excellent open source program for recording and editing
sound effects. With a reasonable sound card and a microphone, it should provide all you need
for creating sound effects for your games. It’s easier to create sound effects if your sound card
is full-duplex—that is, it can both record and play sounds at the same time. Most modern PC
sound cards can do this, although some laptop sound cards don’t. You can download Audacity
from http://audacity.sourceforge.net.

Figure 15-3. This is a screenshot from Audacity.

If you feel the need to use something more professional, then Sound Forge Audio Studio
is the package used to create the sound effects in this book. This is an entry-level version of
the Sound Forge packages that are used to create sound effects in professional games. You can
find more information at www.sonymediasoftware.com (the website of Sony Media Software, the
publishers of Sound Forge).

The Game Maker Community
Whatever you go on to do with Game Maker, we hope that you will join the online Game
Maker community (see Figure 15-4) and share your ideas, knowledge, and expertise with other

CHAPTER 15 ■ FINAL WORDS294

6153CH15.qxd 3/24/06 10:33 AM Page 294

users. The Game Maker forum has over 20,000 worldwide members and is a great place to get
help or advice at any time of the day or night. You’ll even find advice on the tools described in
the previous section, as well as a whole host of others.

Figure 15-4. You’ll want to join the Game Maker community.

Point your web browser to http://forums.gamemaker.nl and you’ll be in contact with
Game Maker users from all around the world in no time at all. From time to time you may
even see us contributing to the discussions.

■Caution Remember that it’s not a good idea to give out personal information (like your full name,
school/college, or home address) on any kind of Internet forum.

Note to Teachers
Game Maker is already used in a growing number of clubs and schools worldwide as an
engaging activity for students from ages 7 to 70. It is certainly ideal for students from 14 up,
and you can find out more about some of the projects happening worldwide through the
teacher’s forum at www.gamelearning.net.

CHAPTER 15 ■ FINAL WORDS 295

6153CH15.qxd 3/24/06 10:33 AM Page 295

Good Luck
Twenty years ago every self-respecting computer enthusiast owned a collection of books
about programming games for the simple computers of the day. These books usually made
the reader type in pages of code, which generally contained a generous helping of typing
errors and bugs to work around. If you were lucky, then hours of painstaking labor might
eventually be rewarded with the chance to control the letter O as it was chased around the
screen by a couple of nasty-looking As. Nonetheless, it was books just like these that inspired
us to write this one, because they were responsible for starting us down a path that lead to the
game-related careers that we have today.

These days it’s tools like Game Maker that will provide the first step on the ladder for
games industry professionals of the future. It’s exciting to think that some of you may go on
to work in the games industry and help to define the shape of game development over the
decades to come. It’s difficult to predict how far games will have evolved by then, but you can
be sure that they will look quite different from the 2D games that you’ve worked on in this
book. Nevertheless, despite the technological advancements that the future will bring, it’s
unlikely that their game mechanics will be such a far cry from the ones you’ve explored here.
We wish you the best of luck and hope that you’ll remember your first game development
projects as fondly as we remember our own.

Jacob and Mark, 2006

CHAPTER 15 ■ FINAL WORDS296

6153CH15.qxd 3/24/06 10:33 AM Page 296

Bibliography

The design chapters in this book are founded on over two decades of amateur and profes-
sional experience developing computer games. Nonetheless, the following texts have helped
to add structure and conviction to many of the ideas and concepts discussed therein:

Crawford, Chris. The Art of Computer Game Design. Out of print: available online at
www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html, 1982.

Crawford, Chris. On Game Design. Indianapolis: New Riders Publishing, 2003.

Loftus, Geoffrey and Loftus, Elizabeth. Mind at Play: The Psychology of Video Games. New York:
Basic Books, 1983.

Malone, Thomas and Lepper, Mark. “Making Learning Fun: A Taxonomy of Intrinsic
Motivations for Learning.” In Aptitude, Learning and Instruction: III. Conative and
affective process analyses. Hilsdale, NJ: Erlbaum, 1987, p. 223–253.

Rollings, Andrew and Morris, Dave. Game Architecture and Design. Scottsdale, AZ: Coriolis
Group, 2000.

Rollings, Andrew and Adams, Ernest. On Game Design. Indianapolis: New Riders Publishing,
2003.

Salen, Katie and Zimmerman, Eric. Rules of Play, Game Design Fundamentals. Cambridge, MA:
MIT Press, 2004.

Wilson, Phil. Hogs of War: Supplementary Game Design (original concept by Ade Carless).
Unpublished design document, 1999.

297

6153BIB.qxd 3/24/06 11:29 AM Page 297

6153BIB.qxd 3/24/06 11:29 AM Page 298

&& (and) operator, GML, 232
// (comments), 248
{ } (curly brackets), GML, 228
= (equal) symbol, GML, 228
+ (increment) operator, GML, 229, 236
! (not) operator, GML, 232
|| (or) operator, GML, 232
_ (underscore) symbol

filenames, 12
GML, 229

A
action games, 87
actions, 14–18

Destroy Instance, 176, 178
Else, 70–71
End Block. See blocks
Execute Code. See Execute Code action
Execute Script. See Execute Script action
Set Score, 28–29, 32

Super Rainbow Reef, 113
Galactic Mail, 57–59, 61

Set Time Line, 182–183
Set Variable, 172

boss plane object (Wingman Sam), 186–187
enemy bullet objects (Wingman Sam), 185
flying plane objects (Wingman Sam), 177,

179–180
Sleep, Galactic Mail flying rocket object, 59
Start Block. See blocks
Test Instance Count, Galactic Mail flying rocket

object, 59
Test Variable, 172

boss plane object (Wingman Sam), 187
enemy plane objects (Wingman Sam), 178
flying plane objects (Wingman Sam), 175,

179
looping island objects (Wingman Sam), 173

time lines, 182–183
Wrap Screen. See Wrap Screen action

adaptive gameplay, Tic-Tac-Toe computer
opponent, 256–257

Advanced mode (Game Maker), 10, 42–43
adventure games, 88
alarms

Super Rainbow Reef
stationary Pop object, 124–125
congratulation object, 106–107

Tank War
parent rocket object, 202
pickup object, 200
shell objects, 198
wall object, 198

Wingman Sam boss plane, 186–188
angles, Super Rainbow Reef Pop object, 110–111
animated characters. See Lazarus, Lazarus

character
Anvil Studio, 292–293
arms races, 152
arrays (GML), 237–239
artificial stupidity, computer-controlled

opponents, 220
assignment statements (GML), 228
asteroid object (Galactic Mail), 47–48

adding visual variety, 62
creating, 47–48

Audacity, 294
Audio Studio, 294
audio. See sound

B
baby dragon object (Evil Clutches), 31–32
backgrounds

images (Evil Clutches), 33–34
Lazarus, 82
music

Evil Clutches, 34–35
Wingman Sam, 188

scrolling (Wingman Sam), 173
Tank War arena, 192–193
Tic-Tac-Toe, 246

balancing (multiplayer games)
beginnings, 214–218
choice, 218–219
computer-controlled opponents, 220

beetle object (Pyramid Panic)
creating, 268
making intelligent, 268–269

Begin Step event, koala object (Koalabr8), 134
behavior

reactive behavior (Pyramid Panic), 267–269
rule-based behavior (Pyramid Panic), 271–275

Bigleg object (Super Rainbow Reef), 113–116
moving Bigleg, 116
parent/child objects, 115–117
small Bigleg, 115
small moving Bigleg, 116

Index

299

6153Index.qxd 3/24/06 4:08 PM Page 299

block objects
Pyramid Panic, 270–271
Super Rainbow Reef, 120–123

blocks, 59–60
End Block action

Galactic Mail, 60
Lazarus, 70–71

Start Block action
Galactic Mail, 59
Lazarus, 69, 71

boss object (Evil Clutches)
background music, 34–35
randomly creating baby dragons, 32
summoning demons, 30–31

boss plane (Wingman Sam)
adding hit counter, 186–187
creating plane object, 186
displaying hit counter, 187
making box more challenging, 187–188

bouncing bombs (Tank War)
creating, 203–204
shooting, 204–205

brackets (GML), 233
brainstorming features, 150–151
bullet object (Wingman Sam), 176

enemy bullets, 184–185
button objects (Super Rainbow Reef), 104

C
calling functions, 231
challenges, 88–92

difficulty, 88–89
goals, 89–90
interactive challenges, 87
rewards, 90–91
subgoals, 92

Change Instance action
Galactic Mail, 54
Lazarus, 68, 70–71, 74, 76–77

Change Sprite action, 52–53
characters, balancing beginnings (multiplayer

games), 214–218
cheats

Lazarus, 82
Super Rainbow Reef, 126

Check Collision action, 69, 79
Check Empty action, 69–72
Check Grid action, 132, 134
choice, 93–94

balancing, 218–219
code

executing, 225–228
Execute Code actions. See Execute Code

actions
Execute Script actions. See Execute Script

actions

scripts as functions, 240–242
writing. See GML

collisions/Collision event
Evil Clutches

baby dragon, 31
demon object, 28–29

Galactic Mail, flying rocket object, 54–55
Koalabr8

exit objects, 136
saw objects, 139
sound effects, 148

Lazarus (falling boxes), 74, 80
sound effects, 81

parent objects, 117
Pyramid Panic

basic enemy object, 267–268
explorer colliding with scarab, 281
explorer with block objects, 271
explorer with treasure objects, 270
extending explorer object to handle collision

with sword, 286–287
handling collision between explorer and

scared mummy, 282
Potion object, 283
rule-based behavior, 272
wall object, 264

Super Rainbow Reef
Bigleg object, 113
Pop and Katch objects, 111

Tank War
bouncing bomb objects, 203–204
pickup object, 200
rocket objects, 202
shells, 198
tank objects, 201, 204
tanks, 193–194

Wingman Sam, enemy planes, 178
color

changing mummy color (Pyramid Panic), 283
random color generation, 235

commands
File menu

Advanced Mode, 10, 42
Exit, 8
New, 42
Open, 7

Resources menu
Create Script, 225–226
Create Object, 14, 18
Create Room, 20
Create Sprite, 11, 13

Run menu, Run in Debug Mode, 243
comments, 248
comparison operators, 232

■INDEX300

6153Index.qxd 3/24/06 4:08 PM Page 300

competition (multiplayer games), 211–214
combining with cooperation, 213
dependent, 212
independent, 211

completion screens
Koalabr8, 130
Pyramid Panic, 262
Super Rainbow Reef, 106–107

computer opponents
balancing, 220
Tic-Tac-Toe

adaptive gameplay, 256–257
simple logic, 251–254
simple strategy, 254–256

conditional actions, 58–59
conditional statements, 232–234
congratulation object, Super Rainbow Reef

completion screen, 106
control, 93–94
controller objects, 75

Koalabr8, 135
adding events to handle rescued koalas,

136–137
creating, 135
editing to fix dead koala bug, 138–139

Lazarus, 75–77
Pyramid Panic

creating, 262–263
extending, 266, 286

Super Rainbow Reef
adding no more lives event, 118–119
creating, 113
showing remaining lives, 119

Tank War, 193
creating, 193
drawing scores, 208–209
recording scores, 195

Wingman Sam
creating, 179
playing background music, 188

cooperative multiplayer games, 213–214
combining with competition, 213
dependent, 213
independent, 213
Wingman Sam. See Wingman Sam game

Cosmigo Pro Motion, 292
Create event, 25
Create Instance action, 57
Create Object command (Resources menu), 14, 18
Create Random action, 77
Create Room command (Resources menu), 20
Create Script command (Resources menu),

225–226
Create Sprite command (Resources menu), 11, 13
Cubase SE, 293
curly brackets { }, GML, 228
cyclic relationships, 218–219

D
damage, Tank War

damage mechanism, 196–197
health bars, 197

darkness (Pyramid Panic), 284
adding behavior of mummy object, 288
creating sword object (Sword of Ra), 286

dead koala object (Koalabr8), 138
debugging programs, 242–243
delayed actions, stationary Pop object (Super

Rainbow Reef), 124–125
demon object (Evil Clutches), 27–29

summoning demons, 30–31
dependent competition, 212
dependent cooperation, 213
depth, 47

Galactic Mail
asteroid object, 47–48
explosion object, 56
flying rocket object, 53
landed rocket object, 51
special moon object, 50
title object, 60

design, 9
challenges, 88–92

difficulty, 88–89
goals, 89–90
rewards, 90–91
subgoals, 92

emergence, 153, 161
springs (Koalabr8), 161

features, 149–154
arms races, 152
brainstorming, 150–151
emergence, 153
equivalent features, 151
Koalabr8, 160–161
one-trick ponies, 152

Galactic Mail, 41–42
game mechanics, 86–87
genres, 87–88
good game design, 85–86
interactivity, 92–95

audio feedback, 95
choices and control, 93–94
interactive challenges, 87
unfair punishment, 94

Koalabr8, 127–128
Lazarus, 65
levels, 154–159

difficulty curves, 158–159
dividing levels, 162–163
learning curves, 156–159
training levels, 161–162

■INDEX 301

Find it faster at http://superindex.apress.com
/

6153Index.qxd 3/24/06 4:08 PM Page 301

multiplayer games
balancing beginnings, 214–218
balancing choice, 218–219
balancing computer-controlled opponents,

220
competition, 211–214
cooperation, 213–214

providing opportunities to save, 160
Pyramid Panic, 259–260
Super Rainbow Reef, 101–103
Tank War, 191–192

balancing choice, 218–219
balancing computer opponents, 220
balancing tank differences, 215–218

Tic-Tac-Toe, 245–246
Wingman Sam, 169–170

Destroy Instance action, 28
Galactic Mail, 57
Lazarus, 74
Wingman Sam

bullet object, 176
enemy planes, 178

detonator object (Koalabr8), 144–145
difficulty, 88–89. See also challenges
difficulty curves, level design, 158–159
disabling Esc key (Super Rainbow Reef), 124
Display Messages

Lazarus, 69, 80
Pyramid Panic, 262

Draw actions, 137
Draw event, 119

showing remaining lives (Super Rainbow Reef),
119

tanks (Tank War), 193–194, 197
Draw Life Images action (Koalabr8), 137
Draw Sprite action, 119
drawing, Tic-Tac-Toe

field, 250
stones, 250

drawing functions (GML), 231

E
Else action, 70–71
emergence, 153, 161

Koalabr8, 161
End Block action

Galactic Mail, 60
Lazarus, 70–71

End Steps, 51
equivalent characters (multiplayers), 214
equivalent features, 151
Esc key, disabling (Super Rainbow Reef), 124
events, 14–19. See also individual event names

inheritance, 117
Evil Clutches game, 9–10

adding challenges/rewards, 88–92
adding interactivity, 92–95

baby dragon object, 31–32
background

image, 33–34
music, 34–35

boss object, 13–17
background music, 34–35
randomly creating baby dragons, 32
summoning demons, 30–31

demon object, 27–29
designing, 9–10
dragon object, 18–19
fireball object, 24–27
rooms, 20–22
running, 23
sound effects, 35–36
sprites, 10–13
summoning demons, 30

Evil Squares game, 86
Execute Code actions, 225

Pyramid Panic, 263
basic enemy, 267–268
beetle object, 268
block objects, 270–271
different mummy object, 279
explorer object, 264–265, 281–282, 286–287
explorer/mummy collision, 282
mummy object, 273
potion object, 283
treasure objects, 270

Execute Script actions, 225–228
scripts as functions, 240–242
Pyramid Panic

controller object, 286
different mummy object, 278–279
mummy object, 277

exit objects (Koalabr8), 136
explorer object (Pyramid Panic)

creating object, 264–265
creating sprites, 263
extending, 281–282, 286–287
handling collision between explorer and scared

mummy, 282
explosions

Galactic Mail, 56–57
Tank War, 195–196
Wingman Sam, 178

F
falling boxes (Lazarus). See Lazarus game, falling

boxes
false keyword, 171
features, 149–154

arms races, 152
brainstorming, 150–151
emergence, 153
equivalent features, 151

■INDEX302

6153Index.qxd 3/24/06 4:08 PM Page 302

Koalabr8, 160–161
one-trick ponies, 152

field object (Tic-Tac-Toe), 247–248
creating, 247
initializing, 247–248

File menu commands
Advanced Mode, 10, 42
Exit, 8
New, 42
Open, 7

files
filenames, 12, 14
opening, 7

finish object (Galactic Mail), 61
finish room (Galactic Mail), 62
fireball object (Evil Clutches), 25–27
flying planes (Wingman Sam), 174–176. See also

Wingman Sam game
adding damage variable, 179–180
creating information panel, 180–181
displaying scores, 181

flying rocket object (Galactic Mail)
adding collision events, 54–55
creating, 53–54
editing, 57–60

fonts, 247
for loops, 236
forward slashes (//), comments, 248
frameworks

Koalabr8, 129–131
completion screen, 130
front-end, 129–130
game settings, 130

Super Rainbow Reef, 103–107
completion screen, 106–107
front-end, 103–106

friction, Tank War, 193
full screen option, 23
functions, 230–232

executing scripts as functions, 240–242

G
Galactic Mail game

adding Game Information, 62–63
asteroid object, 47–48

adding visual variety, 62
creating, 47–48

design, 41–42
explosion object, 56–57
finish object, 61
finish room, 62
flying rocket object

adding collision events, 54–55
creating, 53–54
editing, 57–60

landed rocket object
creating, 51–52
including a Key Press event, 55–56
including change sprite action, 52–53
including keyboard events, 53

levels, 58–60
moon object, 45–47

adding create event, 46–47
adding visual variety, 62
creating, 45–46
including wrap action, 47

rooms, creating/populating with moons and
asteroids, 48–49

running, 49–50
scoring

Set Score action, 57–58, 61
Show Highscore action, 56

sound, 45
special moon object, 50
sprites, 43–44
title screen, 60–61

Galactic Squares game, 86
Game Information, 62–63

Galactic Mail, 62–63
Super Rainbow Reef, 106

Game Maker, 3–8
Advanced mode, 42–43
installing, 3–5
interface, 6, 11
registering, 3, 5
system requirements, 4
website, 5, 8

Game Maker Language. See GML
Game Maker online community, 294–295
game mechanics, 86–87
game over message (Lazarus), 79–80
gamelearning.net teacher’s forum, 295
games

designing, 9
Evil Clutches. See Evil Clutches game
Evil Squares, 86
frameworks. See frameworks
Galactic Mail. See Galactic Mail game
Galactic Squares, 86
genres, 87–88
Koalabr8. See Koalabr8 game
Lazarus Squares, 86
Lazarus. See Lazarus game
Pyramid Panic. See Pyramid Panic game
running, 6–8, 22–23
saving, 22
Super Rainbow Reef. See Super Rainbow Reef

game
Tank War. See Tank War game
Tic-Tac-Toe. See Tic-Tac-Toe game
Wingman Sam. See Wingman Sam game

■INDEX 303

Find it faster at http://superindex.apress.com
/

6153Index.qxd 3/24/06 4:08 PM Page 303

genres, 87–88
GIMP (GNU Image Manipulation Program),

291–292
Global Game Settings

Koalabr8, 130
Pyramid Panic, 262
Wingman Sam, 188–189

global variables, 171, 230. See also variables
GML (Game Maker Language), 225

applying code to other instances (with
statement), 239–240

arrays, 237–239
assignment statements, 228
conditional statements, 232–234
creating scripts, 225–226
debugging, 242–243
executing scripts, 225–228

scripts as functions, 240–242
function, 230–232
Hello World program, 226–228
keywords, 230
loops, 234–237
opening and closing brackets, 233
operators, 228

comparison operators, 232
random color generation, 235
return statement, 242
variables, 228–230

incrementing, 236
GNU Image Manipulation Program (GIMP),

291–292
goals, 89–90. See also challenges
good game design, 85–86
GraphicsGale, 292
gravity

dead koala object (Koalabr8), 138
Pop object (Super Rainbow Reef), 110

grids, 132–134
guns (Wingman Sam)

bullet objects, 176
enemy bullets, 184–185

key release events, 177
shooting keyboard events, 177

H
hazards (Koalabr8)

dead koala object, 137–138
detonators, 144–145
fixing dead koala bug, 138–139
locks and switches, 143–144
rocks, 145–147
saws, 139, 146
TNT, 138

health bars (Tank War), 197
Hello World program, 226–228

help, 8
adding Game Information, 62–63

hiding
objects, 142
tiles, 142

hit counters (Wingman Sam boss plane object),
186–187

Hogs of War, 153–154
HUMANBALANCE Co. GraphicsGale, 292

I
images

backgrounds (Evil Clutches), 33–34
GNU Image Manipulation Program (GIMP),

291–292
incrementing variables, 236
independent competition, 211–212
independent cooperation, 213
inheriting events, 117
initialize statement, loops, 236
installing Game Maker, 3–5
instance functions (GML), 231–232
instances, 24

applying code to other instances, 239–240
interactivity, 92–95

audio feedback, 95
choices and control, 93–94
interactive challenges, 87
unfair punishment, 94

interface (Game Maker), 6, 11
invisible blocks (Super Rainbow Reef), 121
invisible walls (Koalabr8), 142
island objects (Wingman Sam), 173–174

J
Jump Position action

Galactic Mail, 51
Lazarus, 68, 72, 74

K
Katch object (Super Rainbow Reef), 108–112
Key Press event

Evil Clutches dragon/fireball objects, 26–27
Galactic Mail landed rocket object, 55–56
Lazarus character, 69–71

key release event, 177
Keyboard actions (Koalabr8), 133–134
keyboard events

Galactic Mail, 53
Tank War, 194
Wingman Sam

movement events, 175–176
shooting events, 177

keywords
GML, 230
true/false, use with variables, 171

■INDEX304

6153Index.qxd 3/24/06 4:08 PM Page 304

Koalabr8 game, 127–128
controller object, 135

adding events to handle rescued koalas,
136–137

creating, 135
editing to fix dead koala bug, 138–139

design, 127–128
exit objects, 136
features, 160–161
framework, 129–131

completion screen, 130
front-end, 129–130
game settings, 130

hazards
dead koalas, 138
detonators, 144–145
fixing dead koala bug, 138–139
locks and switches, 143–144
rocks, 145–147
saws, 139, 146
TNT, 138

koala object
adding Begin Step event, 134
creating koala object, 132–134
creating koala sprite, 131–132
dead koalas, 138

levels
dividing levels, 162–163
training levels, 161–162

locks and switches, 143–144
restart button, 147
rooms

adding tiles, 141–142
test room, 135–136

saw objects, 139
creating, 139–140
making saws turn for rocks, 146

sound effects, 148
springs, 161, 163
tiles, 140–142

adding tiles to rooms, 141–142
creating tile set, 140–141
making walls invisible, 142

wall object
creating, 131
making walls invisible, 142

L
landed rocket object (Galactic Mail)

creating, 51–52
including a Key Press event, 55–56
including change sprite action, 52–53
including keyboard events, 53

Lazarus game, 65–66
background, 82
completing game, 79–80
design, 65–66

detecting for Lazarus being trapped/freed,
78–79

falling boxes, 73–78
creating box sprite and box objects, 74
creating controller object, 76–77
creating falling box objects, 74–75
creating next box object, 75
testing, 78

Game Information, 82
Lazarus character, 66–72

adding key events, 69–71
adding Step event, 71–72
creating Lazarus object, 68
creating sprite, 67–68
creating squished Lazarus object, 68–69
Else action, 70–71

levels
adding cheats, 82
creating, 82
reaching new levels, 79–80
starter object, 80

sound effects, 81
test room, 72–73, 78
wall object, 72–73

Lazarus Squares game, 86
learning curves, level design, 156–157, 159
levels

adaptive gameplay (Tic-Tac-Toe computer
opponent), 256–257

design, 154–159
difficulty curves, 158–159
learning curves, 156–157, 159

dividing levels, 162–163
Galactic Mail, 58–60
Koalabr8

dividing levels, 162–163
training levels, 161–162

Lazarus. See Lazarus game, levels
Super Rainbow Reef, 125–126
training levels, 161–162
views. See views

levels of difficulty, 88–89. See also challenges
light (Pyramid Panic), changing room to darkness,

284
adding behavior of mummy object, 288
creating sword object (Sword of Ra), 286
extending explorer object, 287

lives (Super Rainbow Reef), 117–119
local variables, 230
locks (Koalabr8), 143–144
logic (Tic-Tac-Toe computer opponent), 251–254
loops

GML, 234–237
Wingman Sam island objects, 173–174

■INDEX 305

Find it faster at http://superindex.apress.com
/

6153Index.qxd 3/24/06 4:08 PM Page 305

M
mazes

Pyramid Panic
adapting room, 265
creating wall objects, 263

Koalabr8. See Koalabr8
mechanics, 86–87
MIDI Tracker, 293
moments, time lines, 182–183
moon object (Galactic Mail), 45–47

adding create event, 46–47
adding visual variety, 62
creating, 45–46

special moon object, 50
including wrap action, 47

motion (Wingman Sam)
looping island objects, 173–174
scrolling background, 173

movable block objects (Pyramid Panic), 270–271
Move Fixed action, 15–16, 19–20

Evil Clutches, 31
Lazarus, 74
setting speed of 0, 134

Move Free action (Galactic Mail moon object),
46–47

movement keyboard events (Wingman Sam
planes), 175–176

multiplayer games
balancing computer-controlled opponents, 220
competition and cooperation, 211–214
Tank War. See Tank War game
Wingman Sam. See Wingman Sam game

mummies (Pyramid Panic)
adapting mummy behavior to darkness, 288
changing color, 283
creating, 272–273

afraid mummy, 280
different mummy, 279

giving mummy object behavior, 273–274
handling collision between explorer and scared

mummy, 282
moving mummy toward explorer, 275–277

music
background

Evil Clutches, 34–35
Wingman Sam, 188

creating, 292–293
naming resources, 12, 14
New command (File menu), 42

O
Object Properties form, 14–19, 32
objects, 13–20

actions, 14–18
adding to rooms, 21–22
assigning sprites, 14

creating, 14, 18
afraid mummy (Pyramid Panic), 280
asteroid (Galactic Mail), 47–48
baby dragon (Evil Clutches), 31–32
basic enemy (Pyramid Panic), 267–268
beetle (Pyramid Panic), 268
Bigleg (Super Rainbow Reef), 113–116
blocks (Pyramid Panic), 270–271
boss (Evil Clutches), 30–35
boss plane (Wingman Sam), 186
bouncing bombs (Tank War), 203–204
boxes (Lazarus), 74–75
bullets (Wingman Sam), 176, 184–185
buttons (Super Rainbow Reef), 104
congratulation object (Super Rainbow Reef),

106
controller objects. See controller objects
dead koala (Koalabr8), 138
demon (Evil Clutches), 27–28
detonator (Koalabr8), 144–145
different mummy (Pyramid Panic), 279
enemy bullets (Wingman Sam), 184–185
enemy planes (Wingman Sam), 178, 184
enemy planes that shoot (Wingman Sam),

185
exit objects (Koalabr8 maze), 136
explorer (Pyramid Panic), 264–265
explosion object (Galactic Mail), 56–57
explosions (Tank War), 195–196
field object (Tic-Tac-Toe), 247
finish object (Galactic Mail), 61
fireball (Evil Clutches), 25
flying rocket object (Galactic Mail), 53–54
Katch (Super Rainbow Reef), 108–109
koalas (Koalabr8), 132–134
landed rocket (Galactic Mail), 51–52
Lazarus (Lazarus), 68
locks (Koalabr8), 143–144
looping islands (Wingman Sam), 173–174
moon (Galactic Mail), 45–46
mummy (Pyramid Panic), 272–273
pickup (Tank War), 200
planes (Wingman Sam), 175
Pop (Super Rainbow Reef), 109–111
potion (Pyramid Panic), 283
restart button (Koalabr8), 147
rockets (Tank War), 202
rocks (Koalabr8), 145
saws (Koalabr8), 139
scarab (Pyramid Panic), 280–281
scorpion (Pyramid Panic), 269
shells (Tank War), 198
special moon (Galactic Mail), 50
squished Lazarus (Lazarus), 68–69
switches (Koalabr8), 143–144
sword (Pyramid Panic), 286

■INDEX306

6153Index.qxd 3/24/06 4:08 PM Page 306

tanks (Tank War), 193–194
title (Galactic Mail), 60–61
title (Super Rainbow Reef), 104
TNT object (Koalabr8), 138
treasure (Pyramid Panic), 269–270
wall (Koalabr8), 131
wall (Lazarus), 72–73
wall (Super Rainbow Reef), 108

controller objects. See controller objects
depth (Galactic Mail), 47

asteroid, 47–48
explosion, 56
flying rocket, 53
landed rocket, 51
special moon, 50
title, 60

events, 14–19
hiding, 142
instances, 24
parents, 115–117

one-trick ponies, 152
online Game Maker community, 294–295
opening files, 7
operators (GML), 228–229, 232
opponents. See competition (multiplayer games);

computer opponents
Outside room event (Evil Clutches baby dragon),

31

P
parent objects, 115–117

rockets (Tank War), 202
shells (Tank War), 198
tanks (Tank War)

adding damage mechanism, 196–197
creating, 193–194
displaying secondary weapons, 201–202
drawing health bars, 197
editing to support shields, 204–205
recording pickups, 201

parentheses (), GML, 232
pickups (Tank War), 200–201
planes (Wingman Sam)

boss plane
adding hit counter, 186–187
creating plane object, 186
displaying hit counter, 187
making box more challenging, 187–188

enemy planes
bullets, 184–185
creating planes, 178, 184
creating planes that shoot, 185
explosions, 178

flying planes, 174–176
adding key release events, 177
adding movement keyboard events, 175–176
adding shooting keyboard events, 177

creating plane objects, 175
damage variable, 179–180
displaying scores, 181
information panel, 180–181

Play Sound action, 34, 58
Pop object (Super Rainbow Reef), 108–112, 124–125
potion object (Pyramid Panic), 283
Pro Motion, 292
programming. See GML
properties, variables, 170–172
Pyramid Panic game, 259

basic enemy object, 267–268
beetle object

creating, 268
making intelligent, 268–269

block objects, 270–271
changing room to darkness, 287–288
completion screen, 262
controller object

creating, 262–263
extending, 266–286

design, 259–260
explorer

creating object, 264–265
creating sprites, 263
extending object, 281–282, 286–287
handling collision between explorer and

scared mummy, 282
front-end, 261
game settings, 262
maze

adapting basic room, 265
adapting room, 265
creating wall objects, 263

mummy objects
adapting behavior to darkness, 288
changing color, 283
creating, 272–273
creating afraid mummy, 280
creating different mummy, 279
giving mummy behavior, 273–274
moving mummy toward explorer, 275

potion object, creating, 283
rooms

adapting basic room for maze, 265
adapting room for maze, 265
basic room, 263
completion room, 262
front-end room, 261

rule-based behavior, 271–272
creating mummy object, 272–273
making mummies walk, 273–274
moving mummy toward explorer, 275

scarab object, 280–281
scoring

completion screen setup, 262
extending score display, 282

■INDEX 307

Find it faster at http://superindex.apress.com
/

6153Index.qxd 3/24/06 4:08 PM Page 307

front-end setup, 261
Sword of Ra, 286–287

scorpion object, 269
states, 279
sword object, 286
treasure objects, 269–270
view, 266

R
reactive behavior (Pyramid Panic), 267–269
registering Game Maker, 3, 5
Relative option, Set Variable action, 172
Relative property

Collision event, 28–29
Key Press event, 26–27

repeat loops, 234–235
Resource menu commands

Create Script, 225–226
Create Object, 14, 18
Create Room, 20
Create Sprite, 11, 13

resources
creating

images, 291–292
music, 292–293
sound effects, 294

filenames, 12, 14
rooms, 20–22. See also rooms
sprites. See sprites
time lines, 182–183

Resources menu commands
Create Object, 14, 18
Create Room, 20
Create Sprite, 11, 13

restart buttons, 147
Restart Game action, 29
Restart Room action, 69
return statement, 242
Reverse Vertical action, 17
rewards, 90–91. See also challenges
RF1 Systems MIDI Tracker, 293
rock object (Koalabr8), 145–147
rocket objects (Galactic Mail)

flying rocket, 53–60
landed rocket, 51–56

role-playing games (RPGs), 88
Room Properties form, 20–21
rooms, 20–22

adding objects, 21–22
backgrounds. See backgrounds
creating, 20–21
Galactic Mail, 48–49

finish room, 62
title room, 61

Koalabr8
adding tiles, 141–142
test room, 135–136

Lazarus
Restart Room action, 69
test room, 72–73, 78

leaving instances outside rooms, warning
message, 72

Pyramid Panic
adapting basic room for maze, 265
adapting room for maze, 265
basic room, 263
completion room, 262
front-end room, 261

Speed, 51
Super Rainbow Reef

completion room, 107
front-end room, 105
test room, 112–114

Tank War, 193
views, 205–209

test rooms
Koalabr8, 135–136
Lazarus, 72–73, 78
Super Rainbow Reef, 112–114

Tic-Tac-Toe, 247
rotating sprites, 52
RPGs (role-playing games), 88
rule-based behavior (Pyramid Panic), 271–272

creating mummy object, 272–273
giving mummy object behavior, 273–274
moving mummy toward explorer, 275

Run in Debug Mode command (Run menu), 243
running games, 6–8, 22–23, 49–50

S
saving, 22

providing opportunities to save, 160
Super Rainbow Reef, 123–124

saw objects (Koalabr8), 139, 146
scarab object (Pyramid Panic), 280–281
scoring

Galactic Mail
Set Score action, 57–59, 61
Show Highscore action, 56, 61

Pyramid Panic
completion screen setup, 262
extending score display, 282
front-end setup, 261
Sword of Ra, 286–287

Set Score action, 28–29, 32, 57–61
Show Highscore action, 29, 56, 61
Tank War

drawing scores, 208–209
recording scores in controller object, 195

Tic-Tac-Toe, 248
Wingman Sam, displaying scores/high-score

table, 181
scorpion object (Pyramid Panic), 269

■INDEX308

6153Index.qxd 3/24/06 4:08 PM Page 308

scripts. See also GML
conditional statements, 232–234
debugging, 242–243
executing, 227–228

scripts as functions, 240–242
Pyramid Panic

changing room to darkness, 286
making mummies walk, 274
moving mummies toward explorers, 275–276

return statement, 242
Tic-Tac-Toe

adaptive gameplay, 256–257
computer opponent simple logic, 251–254
computer opponent simple strategy, 254–256
creating/executing, 248–249
drawing field, 250
drawing stones, 250
field click, 248–249
initializing field object, 247–248
mouse click, 249

writing, 225–226. See also GML
scrolling background (Wingman Sam), 173
Scrolling Shooter game style, 173
Set Score action, 28–29, 32

Super Rainbow Reef, 113
Galactic Mail, 57–61

Set Time Line action, 182–183
Set Variable action, 172

Wingman Sam
boss plane object, 186–187
enemy bullet objects, 185
flying plane objects, 177–180

shell objects (Tank War)
creating parent shells, 198
creating players’ shells, 199
firing shells, 199

shields (Tank War), 204–205
shooting (Wingman Sam)

bullet objects, 176
enemy bullets, 184–185

enemy plane objects, 185
key release events, 177
keyboard events, 177

Show Highscore action, 29, 56, 61
Simple mode, 11
simulator games, 87
Sleep action

Galactic Mail, 59
Lazarus, 80

small Bigleg object (Super Rainbow Reef), 115
Smooth Edges property, 66
solid blocks (Super Rainbow Reef), 120–121
Solid option (Lazarus), 72–74
sound

audio feedback, 95
explosions (Wingman Sam), 178
Galactic Mail, 45

Lazarus, 81
music

background music, 34–35
creating, 292–293

Play Sound action, 34, 58
Pyramid Panic, 261
Super Rainbow Reef, 123

sound effects
creating, 294
Evil Clutches, 35–36
Koalabr8, 148
Tic-Tac-Toe, 246

Sound Forge Audio Studio, 294
Sound Properties form, 35
special moon object (Galactic Mail), 50
speed, 51
springs (Koalabr8), 161, 163
Sprite Editor, 44–45
Sprite Properties form, 11–12, 44
sprites, 10–13

assigning to objects, 14
change sprite action (Galactic Mail), 52–53
creating, 11–13

Galactic Mail, 43–44
Koalabr8, 131–132
Lazarus character, 67–68, 74
Tic-Tac-Toe, 246

Draw Sprite action, 119
Pyramid Panic explorer, 263
rotating, 52
Smooth Edges property, 66
Transparent option, 12–13
Wingman Sam

boss hit counter, 187
boss plane, 186
bullets, 176
enemy bullets, 184
enemy planes, 178, 184
enemy planes that shoot, 185
flying planes, 175
information panel, 180
island objects, 173

starfish game. See Super Rainbow Reef game
Start Block action

Galactic Mail, 59
Lazarus, 69, 71

statements (GML), 228
assignment statements, 228
conditional statements, 232–234

states (Pyramid Panic mummy object), 278–279
Steinberg Cubase SE, 293
Steps, 51

landed rocket object (Galactic Mail), 51
Lazarus character, 71–72

strategy (Tic-Tac-Toe computer opponent),
254–256

strategy games, 87

■INDEX 309

Find it faster at http://superindex.apress.com
/

6153Index.qxd 3/24/06 4:08 PM Page 309

subgoals, 92
Super Rainbow Reef game, 101–103

Bigleg object, 113–116
moving Bigleg, 116
small Bigleg, 115
small moving Bigleg, 116

blocks, 120–123
normal blocks, 120
solid blocks, 120–121
special blocks, 121–123

design, 101–103
disabling Esc key, 124
framework, 103–107

completion screen, 106–107
front-end, 103–106

Game Information, 106
levels, 125–126
lives, 117–119
parent/child objects, 115–117
Pop and Katch objects, 108–112

stationary Pop, 124–125
possible split-screen multiplayer version,

211–212
rooms

completion room, 107
front-end room, 105
test room, 112–114

saving games, 123–124
sound effects, 123
wall object, 108

switches (Koalabr8), 143–144
sword object (Pyramid Panic), 286

T
Tank War game, 191

arena, 192–193
background sound, 193
controller object, 193

creating, 193
drawing scores, 208–209
recording scores, 195

damage mechanism, 196–197
design, 191–192

balancing choice, 218–219
balancing computer opponents, 220
balancing tank differences, 215–218

explosions
large explosion objects, 195–196
small explosion objects, 196

health bars, 197
pickups

creating pickup object, 200
recording, 201

room, 193. See also Tank War, views
scoring

drawing scores, 208–209
recording scores in controller object, 195

secondary weapons, 199
bouncing bombs, 203–205
displaying, 201–202
rockets, 202–203

shells
creating parent shell object, 198
creating players’ shell objects, 199
firing, 199

shields, 204–205
tank objects, 193–194
views, 205–209
walls

creating, 192–193
editing wall object to make it reappear, 198

teacher’s forum at gamelearning.net, 295
Test Instance Count action

flying rocket object (Galactic Mail), 59
Lazarus, 76

test rooms
Koalabr8, 135–136
Lazarus, 72–73, 78
Super Rainbow Reef, 112–114

Test Variable action, 172
Wingman Sam

boss plane object, 187
enemy plane objects, 178
flying plane objects, 175, 179
looping island objects, 173

Tic-Tac-Toe game
background, 246
computer opponent

adaptive gameplay, 256–257
simple logic, 251–254
simple strategy, 254–256

design, 245–246
drawing stones, 250
field object, 247–248

creating, 247
drawing, 250
initializing, 247–248

field_click script, 248–249
font, 247
mouse click script, 249
room, 247
scoring, 248
sound effects, 246

tiles, Koalabr8, 140–142
adding to rooms, 141–142
creating tile set, 140–141
hiding, 142
making walls invisible, 142

time lines, 182–183
title object, Super Rainbow Reef

adding create event, 118
creating, 104

title screen, Galactic Mail, 60–61
TNT object (Koalabr8), 138

■INDEX310

6153Index.qxd 3/24/06 4:08 PM Page 310

Transparent option, sprites, 12–13
treasure objects (Pyramid Panic), 269–270
true keyword, use with variables, 171

U
underscore (_) symbol

filenames, 12
GML, 229

unfair punishment, 94
user interface (Game Maker), 6, 11

V
var keyword (GML), 230
variables, 63, 170–172

Collision event (Tank War), 194
incrementing (GML), 236
keyboard events (Tank War), 194
properties, 170–172
Set Variable action, 172

boss plane object (Wingman Sam), 186–187
enemy bullet objects (Wingman Sam), 185
flying plane objects (Wingman Sam), 177,

179–180
Test Variable action, 172

boss plane object (Wingman Sam), 187
enemy plane objects (Wingman Sam), 178
flying plane objects (Wingman Sam), 175,

179
looping island objects (Wingman Sam), 173

using in scripts, 228–230
views

Pyramid Panic, 266
Tank War, 205–209

Visible option, walls (Koalabr8), 142

W
wall object
walls

Koalabr8
creating, 131
making walls invisible, 142

Lazarus, 72–73
Pyramid Panic, creating, 263
Tank War arena

creating, 192–193
editing wall object to make it reappear, 198

weapons
Tank War

bouncing bombs, 203–205
displaying secondary weapons, 201–202
rockets, 202–203
shells, 198–199

Wingman Sam, 176–179
website (Game Maker), 5, 8
weighting choices (multiplayer games), 218
while loops, 235–236
Willow Software Anvil Studio, 292–293

Wingman Sam game, 169–170
background music, 188
boss plane

adding hit counter, 186–187
creating plane object, 186
displaying hit counter, 187
making box more challenging, 187–188

bullet object, 176
enemy bullets, 184–185

controller object
creating, 179
playing background music, 188

design, 169–170
displaying scores/high-score table, 181
editing global game settings, 188–189
enemy planes

creating bullets, 184–185
creating planes, 178, 184
creating planes that shoot, 185
explosions, 178

flying planes, 174–176
adding key release events, 177
adding movement keyboard events, 175–176
adding shooting keyboard events, 177
creating plane objects, 175
damage variable, 179–180
information panel, 180–181

independent cooperation, 213
motion

looping island objects, 173–174
scrolling background, 173

single player version, 179
time lines, 182–183

with statement
GML, 239–240
Pyramid Panic basic enemy object, 268

Wrap Screen action, 45, 47
writing scripts, 225–226. See also GML

Z
Zelda: Wind Waker, 85

■INDEX 311

6153Index.qxd 3/24/06 4:08 PM Page 311

	The Game Maker’s Apprentice: Game Development for Beginners
	Contents
	PART 1 Getting Started
	CHAPTER 1 Welcome to Game Maker
	CHAPTER 2 Your First Game: Devilishly Easy

	PART 2 Action Games
	CHAPTER 3 More Actions: A Galaxy of Possibilities
	CHAPTER 4 Target the Player: It’s Fun Being Squished
	CHAPTER 5 Game Design: Interactive Challenges

	PART 3 Level Design
	CHAPTER 6 Inheriting Events: Mother of Pearl
	CHAPTER 7 Maze Games: More Cute Things in Peril
	CHAPTER 8 Game Design: Levels and Features

	PART 4 Multiplayer Games
	CHAPTER 9 Cooperative Games: Flying Planes
	CHAPTER 10 Competitive Games: Playing Fair with Tanks
	CHAPTER 11 Game Design: Balance in Multiplayer Games

	PART 5 Enemies and Intelligence
	CHAPTER 12 GML: Become a Programmer
	CHAPTER 13 Clever Computers: Playing Tic-Tac-Toe
	CHAPTER 14 Intelligent Behavior: Animating the Dead
	CHAPTER 15 Final Words

	BIBLIOGRAPHY
	INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

